976 resultados para Porous Medium
Resumo:
Porous SiO2 antireflective (AR) coatings are prepared from the colloidal silica solution modified with methyltriethoxysilane (MTES) based on the sol-gel route. The viscosity of modified silica suspensions changes but their stability keeps when MTES is introduced. The refractive indices of modified coatings vary little after bake treatment from 100 to 150 Celsius. The modified silica coatings on Ti:sapphire crystal, owning good homogeneity, display prominent antireflective effect within the laser output waveband (750-850 nm) of Ti:sapphire lasers, with average transmission above 98.6%, and own laser induced damage thresholds (LIDTs) of more than 2.2 J/cm2 at 800 nm with the pulse duration of 300 ps.
Resumo:
A novel metallized azo dye has been synthesized. The absorption spectra of the thin film and thermal characteristic are measured. Static optical recording properties with and without the Bi mask layer super-resolution near-field structure (Super-RENS) of the metal-azo dye are investigated. The results show that the metal-azo dye film has a broad absorbance band in the region of 450-650 nm and the maximum absorbance wavelength is located at 603 nm. It is also found that the new metallized azo dye occupies excellent thermal stability, initiatory decomposition temperature is at 270 degrees C and the mass loss is about 48% in a narrow temperature region (15 degrees C). The complex refractive index N (N = n + ik) is measured. High refractive index (n = 2.45) and low extinction coefficient (k = 0.2) at the recording wavelength 650nm are attained. Static optical recording tests with and without Super-RENS are carried out using a 650nm semiconductor diode laser with recording power of 7mW and laser pulse duration of 200ns. The AFM images show that the diameter of recording mark on the dye film with the Bi mask layer is reduced about 42%, compared to that of recorded mark on the dye film without Super-RENS. It is indicated that Bi can well performed as a mask layer of the dye recording layer and the metallized azo dye can be a promising candidate for recording media with the super-resolution near-field structure.
Resumo:
Fe:BiOx films are fabricated on K9 glass substrates by rf-magnetron sputtering of a BiFeO target under argon atmosphere with increasing sputtering power from 80 to 200 W at room temperature. It is found that the thin films grown at the sputtering power of 160W can be formed at an appropriate deposition rate and have an improved surface morphology. The XPS result reveals that the films investigated are comprised of Bi, Fe and O elements. A typical XRD pattern shows that no phase transition occurs in the films up to 400 degrees C. The results of the blue laser recording test demonstrate that the Fe:BiOx films have good writing sensitivity for blue laser beam (406.7 nm) and good stability after reading 10000 times. The recording marks of 200nm or less are obtained. These results indicate that the introduction of Fe into BiOx films can reduce the mark size and improve the stability of the films.
Resumo:
A novel double-slab Nd:YAG laser, which uses face-pumped slab medium cooled by liquid with different temperatures on both sides, is proposed. The thermal distortion of wavefront caused by the non-uniform temperature distribution in the laser gain media can be self-compensated. According to the method of operation, the models of the temperature distribution and stress are presented, and the analytic solutions for the model are derived. Furthermore, the numerical simulations with pulse pumping energy of 10 J and repetition frequencies of 500 and 1000 Hz are calculated respectively for Nd:YAG laser medium. The simulation results show that the temperature gradient remains the approximative linearity, and the heat stress is within the extreme range. Then the absorption coefficient is also discussed. The result indicates that the doping concentration cannot be too large for the high repetition frequency laser. It has been proved that the high repetition frequency, high laser beam quality, and high average output power of the order of kilowatt of Nd: YAG slab laser can be achieved in this structure.
Resumo:
We report an alternative medium of transparent upconverting colloid containing lanthanide ion doped NaYF4 nanocrystals for three-dimensional (3D) volumetric display. The colloids exhibit tunable upconversion luminescence with a wide spectrum of colors by adjusting the doping concentrations of the nanocrystals and the compositions of the colloids. Our preliminary experimental result indicates that an upconverting colloid-based 3D volumetric display using a convergent, near infrared laser beam to induce a localized luminescent spot near the focus is technically feasible. Therefore arbitrary 3D objects can be created inside the upconverting colloid by use of computer controlled 3D scanning systems. (C) 2008 Optical Society of America
Resumo:
A colorless transparent, blue green emission material was fabricated by sintering porous glass impregnated with copper ions. The emission spectral profile obtained from Cu+ -doped high silica glass (HSG) by 267-mn monochromatic light excitation matches that obtained by pumping with an 800-nm femtosecond laser, indicating that the emissions in both cases come from an identical origin. The upconversion emission excited by 800-nm femtosecond laser is considered to be a three-photon excitation process. A tentative scheme of upconverted emission from Cu+ -doped HSG was also proposed. The glass materials presented herein are expected to find application in lamps, high density optical storage, and three-dimensional color displays.