924 resultados para Poly (3-methylthiophene)
Resumo:
Molecular dynamics simulations of the glass-forming liquid 2Ca(NO(3))(2)center dot 3KNO(3) (CKN) were performed from high temperature liquid states down to low temperature glassy states at six different pressures from 10(-4) to 5.0 GPa. The temperature dependence of the structural relaxation time indicates that the fragility of liquid CKN changes with pressure. In line with recent proposal [Scopigno , Science 302, 849 (2003)], the change on liquid fragility is followed by a proportional change of the nonergodicity factor of the corresponding glass at low temperature. (c) 2008 American Institute of Physics.
Resumo:
The piperidone ring in the title compound, C12H15NO3S, has a slightly distorted half-chair conformation with the methyl, carbonyl and phenylsulfonyl ring substituents occupying equatorial, equatorial and axial positions, respectively. Molecules are connected into centrosymmetric dimers via C-H center dot center dot center dot O interactions and these associate into layers via C-H center dot center dot center dot O-S contacts. Further C-H center dot center dot center dot O interactions involving both the carbonyl and sulfonyl O atoms consolidate the crystal packing by providing connections between the layers.
Resumo:
A saddle shaped tetracluster porphyrin species containing four [Ru(3)O(OAc)(6)(py)(2)](+) clusters coordinated to the N-pyridyl atoms of 5,10,15,20-tetra(3-pyridyl)porphyrin, H(2)(3-TCPyP), has been investigated in comparison with the planar tetra(4-pyridyl) porphyrin analogue H(2)(4-TCPyP). The steric effects from the bulky peripheral complexes play a critical role in the H(2)(3-TCPyP) species, determining a non-planar configuration around the porphyrin centre and precluding any significant pi-electronic coupling, in contrast with the less hindered H(2)(4-TCPyP) species. Both systems exhibit a photoelectrochemical response in the presence of nanocrystalline TiO(2) films, involving the porphyrin excitation around 450 nm. However, only in the H(2)(4-TCPyP) case do the cluster moieties also contribute to the photoinduced electron injection process at 670 nm, reflecting the relevance of the electronic coupling between the porphyrin centre and the peripheral complexes.
Resumo:
In the present work we investigated the electrochemical behavior of PVA on polycrystalline Pt and single-crystal Pt electrodes. PVA hampered the characteristic hydrogen UPD and anion adsorption on all investigated surfaces, with the processes on Pt(110) being the most affected by the PVA presence. Several oxidation waves appeared as the potential was swept in the positive direction and the Pt(111) was found to be the most active for the oxidation processes. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3615965] All rights reserved.
Resumo:
A new approach for the integration of dual contactless conductivity and amperometric detection with an electrophoresis microchip system is presented. The PDMS layer with the embedded channels was reversibly sealed to a thin glass substrate (400 mu m), on top of which a palladium electrode had been previously fabricated enabling end-channel amperometric detection. The thin glass substrate served also as a physical wall between the separation channel and the sensing copper electrodes for contactless conductivity detection. The latter were not integrated in the microfluidic device, but fabricated on an independent plastic substrate allowing a simpler and more cost-effective fabrication of the chip. PDMS/glass chips with merely contactless conductivity detection were first characterized in terms of sensitivity, efficiency and reproducibility. The separation efficiency of this system was found to be similar or slightly superior to other systems reported in the literature. The simultaneous determination of ionic and electroactive species was illustrated by the separation of peroxynitrite degradation products, i.e. NO(3)(-) (non-electroactive) and NO(2)(-) (electroactive), using hybrid PDMS/glass chips with dual contactless conductivity and amperometric detection. While both ions were detected by contactless conductivity detection with good efficiency, NO(2)(-) was also simultaneously detected amperometrically with a significant enhancement in sensitivity compared to contactless conductivity detection.
Resumo:
Dielectric and Raman scattering experiments were performed on polycrystalline Pb(1-x)Ba(x)TiO(3) thin films (x=0.40 and 0.60) as a function of temperature. The dielectric study on single phase compositions revealed that a diffuse-type phase transition occurred upon transformation of the cubic paraelectric to the tetragonal ferroelectric phase in all thin films, which showed a broadening of the dielectric peak. Diffusivity was found to increase with increasing barium contents in the composition range under study. In addition, the temperature dependence of Raman scattering spectra was investigated through the ferroelectric phase transition. The temperature dependence of the phonon frequencies was used to characterize the phase transitions. Raman modes persisted above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive. The origin of these modes was interpreted as a breakdown of the local cubic symmetry by chemical disorder. The lack of a well-defined transition temperature and the presence of broadbands in some temperature intervals above the paraferroelectric phase transition temperature suggest a diffuse-type phase transition. (C) 2008 American Institute of Physics.
Resumo:
The asymmetric unit of the title compound, C(8)H(8)O(2), contains two crystallographically independent molecules, which form dimers linked by O center dot center dot center dot H-O hydrogen bonds. The benzene rings in the dimers are inclined at a dihedral angle of 7.30 (8)degrees and both methyl groups display rotational disorder. This redetermination results in a crystal structure with significantly higher precision than the original determination [Ellas & Garcia-Blanco (1963). Acta Cryst. 16, 434], in which the authors reported only the unit-cell parameters and space group, without any detailed information on the atomic arrangement. In the crystal, dimers are connected by weak C-H center dot center dot center dot O interactions, forming R(2)(2)(10) and R(4)(4)(18) rings along [110] and an infinite zigzag chain of dimers along the [001] direction also occurs.
Resumo:
A simple and easy approach to produce polymeric microchips with integrated copper electrodes for capacitively coupled contactless conductivity detection (CD) is described. Copper electrodes were fabricated using a printed circuit board (PCB) as an inexpensive thin-layer of metal. The electrode layout was first drawn and laser printed on a wax paper sheet. The toner layer deposited on the paper sheet was thermally transferred to the PCB surface working as a mask for wet chemical etching of the copper layer. After the etching step, the toner was removed with an acetonitrile-dampened cotton. A poly(ethylene terephthalate) (PET) film coated with a thin thermo-sensitive adhesive layer was used to laminate the PCB plate providing an insulator layer of the electrodes to perform CID measurements. Electrophoresis microchannels were fabricated in poly(dimethylsiloxane) (PDMS) by soft lithography and reversibly sealed against the PET film. These hybrid PDMS/PET chips exhibited a stable electroosmotic mobility of 4.25 +/- 0.04 x 10(-4) V cm(-2) s(-1), at pH 6.1, over fifty runs. Efficiencies ranging from 1127 to 1690 theoretical plates were obtained for inorganic cations.
Resumo:
The title compound, C(16)H(15)N(3)O(2)S, was synthesized by the reaction of 2-amino-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carbonitrile and o-fluoronitrobenzene. The thiophene and nitrophenyl rings and amino and carbonitrile groups are coplanar with a maximum deviation of 0.046 (2) angstrom and a dihedral angle of 0.92 (6)degrees between the rings. The cyclohepta ring adopts a chair conformation. Intramolecular N-H center dot center dot center dot O and C-H center dot center dot center dot S interactions occur. In the crystal, the molecules form layers that are linked by pi-pi stacking interactions between the thiophene and benzene rings [centroid-centroid distances = 3.7089 (12) and 3.6170 (12) angstrom].
Resumo:
Techniques that employ (15)N have proved to be an important tool in many areas of the agronomic and biomedical sciences. Nevertheless, their use is limited by methodological difficulties and by the price of compounds in the international market. Nitric compounds ((15)NO(3)(-)) have attracted the interest of researchers. However, these compounds are not currently produced in Brazil. Thus, in the present work H(15)NO(3) was obtained from the oxidation of anhydrous (15)NH(3). The method we used differs from the industrial process in that the absorption tower is replaced with a polytetrafluoroethylene-lined, stainless-steel hydration reactor. The process output was evaluated based on the following parameters: reaction temperature; ratio of reagents; pressure and flow of (15)NH(3(g)) through the catalyst (Pt/Rh). The results showed that, at the best conditions (500 degrees C; 50% excess O(2); 0.4 MPa; and 3.39 g. min(-1) of (15)NH(3)), a conversion percentage (N-(15)NH(3) to N-(15)NO(3)(-)) of 62.2%, an overall nitrogen balance (N-(15)NH(3) + N-(15)NO(3)(-)) of 86.8%, and purity higher than 99% could be obtained.
Resumo:
Glypican-3 (GPC3) is a proteoglycan involved in proliferation and cell survival. Several reports demonstrated that GPC3 is downregulated in some tumors, such as breast cancer. Previously, we determined that GPC3 reexpression in the murine mammary adenocarcinoma LM3 cells induced an impairment of their invasive and metastatic capacities, associated with a decrease of their motility and an increase of their cell death. We demonstrated that GPC3 inhibits canonical Wnt signaling, as well as it activates non canonical pathway. Now, we identified signaling pathways responsible for the pro-apoptotic role of GPC3 in LM3 cells. We found for the first time that GPC3 inhibits the PI3K/Akt anti-apoptotic pathway while it stimulates the p38MAPK stress-activated one. We report a concomitant modulation of CDK inhibitors as well as of pro- and anti-apoptotic molecules. Our results provide new clues regarding the mechanism involved in the modulation induced by GPC3 of mammary tumor cell growth and survival.
Resumo:
Voltage-gated sodium channels have been implicated in acute and chronic neuropathic pain. Among subtypes, Nav1.7 single mutations can cause congenital indifference to pain or chronic neuropathic pain syndromes, including paroxysmal ones. This channel is co-expressed with Nav1.8, which sustains the initial action potential; Nav1.3 is an embrionary channel which is expressed in neurons after injury, as in neuropathic conditions. Few studies are focused on the expression of these molecules in human tissues having chronic pain. Trigeminal neuralgia (TN) is an idiopathic paroxysmal pain treated with sodium channel blockers. The aim of this study was to investigate the expression of Nav1.3, Nav1.7 and Nav1.8 by RT-PCR in patients with TN, compared to controls. The gingival tissue was removed from the correspondent trigeminal area affected. We found that Nav1.7 was downregulated in TN (P=0.017) and Nav1.3 was upregulated in these patients (P=0.043). We propose a physiopathological mechanism for these findings. Besides vascular compression of TN, this disease might be also a channelopathy. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Nb(3)Sn is one of the most used superconducting materials for applications in high magnetic fields. The improvement of the critical current densities (J(c)) is important, and must be analyzed together with the optimization of the flux pinning acting in the material. For Nb(3)Sn, it is known that the grain boundaries are the most effective pinning centers. However, the introduction of artificial pinning centers (APCs) with different superconducting properties has been proved to be beneficial for J(c). As these APCs are normally in the nanometric-scale, the conventional heat treatment profiles used for Nb(3)Sn wires cannot be directly applied, leading to excessive grain growth and/or increase of the APCs cross sections. In this work, the heat treatment profiles for Nb(3)Sn superconductor wires with Cu(Sn) artificial pinning centers in nanometric-scale were analyzed in an attempt to improve J(c) . It is described a methodology to optimize the heat treatment profiles in respect to diffusion, reaction and formation of the superconducting phases. Microstructural, transport and magnetic characterization were performed in an attempt to find the pinning mechanisms acting in the samples. It was concluded that the maximum current densities were found when normal phases (due to the introduction of the APCs) are acting as main pinning centers in the global behavior of the Nb(3)Sn superconducting wire.
Resumo:
This work work evaluates linoleic acid peroxidation reactions initiated by Fe(3+)-reducing compounds recovered from Eucalyptus grandis, biotreated with the biopulping fungus Ceriporiopsis subvermispora. The aqueous extracts from biotreated wood had the ability to reduce Fe(3+) ions from freshly prepared solutions. The compounds responsible for the Fe(3+)-reducing activity corresponded to UV-absorbing substances with apparent molar masses from 3 kDa to 5 kDa. Linoleic acid peroxidation reactions conducted in the presence of Fe(3+) ions and the Fe(3+)-reducing compounds showed that the rate of O(2) consumption during peroxidation was proportional to the Fe(3+)-reducing activity present in each extract obtained from biotreated wood. This peroxidation reaction was coupled with in-vitro treatment of ball-milled E. grandis wood. Ultraviolet data showed that the reaction system released lignin fragments from the milled wood. Size exclusion chromatography data indicated that the solubilized material contained a minor fraction representing high-molar-mass molecules excluded by the column and a main low-molar-mass peak. Overall evaluation of the data suggested that the Fe(3+)-reducing compounds formed during wood biodegradation by C subvermispora can mediate lignin degradation through linoleic acid peroxidation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Since the discovery of Nb(3)Sn superconductors many efforts have been expended to improve the transport properties in these materials. In this work, the heat treatment profiles for Nb(3)Sn superconductor wires with Cu(Sn) artificial pinning centers (APCs) with nanometric-scale sizes were analyzed in an attempt to improve the critical current densities and upper critical magnetic field. The methodology to optimize the heat treatment profiles in respect to the diffusion, reaction and formation of the superconducting phases is described. Microstructural characterization, transport and magnetic measurements were performed in an attempt to relate the microstructure to the pinning mechanisms acting in the samples. It was concluded that the maximum current densities occur due to normal phases (APCs) that act as the main pinning centers in the global behavior of the Nb(3)Sn superconducting wire. The APC technique was shown to be very powerful because it permitted mixing of the pinning mechanism. This achievement was not possible in other studies in Nb(3)Sn wires reported up to now.