649 resultados para Plasminogen activators


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de dout. em Biologia, especialidade de Biologia Molecular, Unidade de Ciências e Tecnologias dos Recursos Aquáticos, Univ. do Algarve

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The general objective of this study was to contribute to the understanding of the chemical evolution of fluids that percolate through carbonate rocks of the Jandaíra Formation. The oxidation and reduction conditions in which grains, source and cement were formed was investigated using the cathodoluminescence technique (CL). The study area is located in the west part of the Potiguar Basin (Fazenda Belém field) and Rosário Ledge (Felipe Guerra municipality, State of Rio Grande do Norte, Brazil). The analysis of thin sections of carbonate rocks under CL revealed that grains (allochemical or not) and diagenetic products (micritization, dolomitization, neomorphism and cementation) exhibit since absence of luminescence the various luminescence colors (yellow, orange, red, brown, and blue) in a variety of intensities. As pure calcite shows dark blue luminescence, the occurrence of different luminescence colors in calcite crystals suggest one or more punctual crystal defects such as free electron, free space and impurity. The dyeing of thin sections with alizarin and potassium ferrocyanide revealed the absence of ferrous carbonate in the different lithotypes of Jandaíra Formation. Therefore, the different colors and intensities of CL observed in these rocks are probably caused by the presence of ion activators such as Mn2+ and is not an activator/inhibitor combination. In the same way, the absence of luminescence is very probably caused by the absence of activator ions and not due to the low concentration of inhibitor ions such as Fe2+. The incorporation of Mn2+ in the different members of the Jandaíra Formation must have been controlled by the redox state of the depositional environment and diagenesis. Therefore, it is possible that the luminescent members have been formed (e.g.,ooids) or have been modified (gastropod neomorphism) under reduction conditions in the depositional environments, in subsurface during the burial, or, in the case of Rosario Ledge samples , during the post-burial return to surface conditions. As regards the sudden changes from low to moderate and to strong luminescence, these features should indicate the precipitation of a fluid with chemical fluctuations, which formed the frequent zonations in the block cement of the Rosario Ledge samples. This study suggests that the different intensities and colors of CL should be correlated with the Mn2+ and Fe2+ contents, and stable isotopes of samples to determine the salinity, temperature, pH e Eh conditions during deposition

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric Oxide (NO) has been known for long to regulate vessel tone. However, the close proximity of the site of NO production to “sinks” of NO such as hemoglobin (Hb) in blood suggest that blood will scavenge most of the NO produced. Therefore, it is unclear how NO is able to play its physiological roles. The current study deals with means by which this could be understood. Towards studying the role of nitrosothiols and nitrite in preserving NO availability, a study of the kinetics of glutathione (GSH) nitrosation by NO donors in aerated buffered solutions was undertaken first. Results suggest an increase in the rate of the corresponding nitrosothiol (GSNO) formation with an increase in GSH with a half-maximum constant EC50 that depends on NO concentration, thus indicating a significant contribution of ∙NO2 mediated nitrosation in the production of GSNO. Next, the ability of nitrite to be reduced to NO in the smooth muscle cells was evaluated. The NO formed was inhibited by sGC inhibitors and accelerated by activators and was independent of O2 concentration. Nitrite transport mechanisms and effects of exogenous nitrate on transport and reduction of nitrite were examined. The results showed that sGC can mediate nitrite reduction to NO and nitrite is transported across the smooth muscle cell membrane via anion channels, both of which can be attenuated by nitrate. Finally, a 2 – D axisymmetric diffusion model was constructed to test the accumulation of NO in the smooth muscle layer from reduction of nitrite. It was observed that at the end of the simulation period with physiological concentrations of nitrite in the smooth muscle cells (SMC), a low sustained NO generated from nitrite reduction could maintain significant sGC activity and might affect vessel tone. The major nitrosating mechanism in the circulation at reduced O2 levels was found to be anaerobic and a Cu+ dependent GSNO reduction activity was found to deliver minor amounts of NO from physiological GSNO levels in the tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is a common, progressive neurodegenerative disease characterised by degeneration of nigrostriatal dopaminergic neurons, aggregation of α-synuclein and motor symptoms. Current dopamine-replacement strategies provide symptomatic relief, however their effectiveness wear off over time and their prolonged use leads to disabling side-effects in PD patients. There is therefore a critical need to develop new drugs and drug targets to protect dopaminergic neurons and their axons from degeneration in PD. Over recent years, there has been robust evidence generated showing that epigenetic dysregulation occurs in PD patients, and that epigenetic modulation is a promising therapeutic approach for PD. This article first discusses the present evidence implicating global, and dopaminergic neuron-specific, alterations in the methylome in PD, and the therapeutic potential of pharmacologically targeting the methylome. It then focuses on another mechanism of epigenetic regulation, histone acetylation, and describes how the histone acetyltransferase (HAT) and histone deacetylase (HDAC) enzymes that mediate this process are attractive therapeutic targets for PD. It discusses the use of activators and/or inhibitors of HDACs and HATs in models of PD, and how these approaches for the selective modulation of histone acetylation elicit neuroprotective effects. Finally, it outlines the potential of employing small molecule epigenetic modulators as neuroprotective therapies for PD, and the future research that will be required to determine and realise this therapeutic potential.