958 resultados para Plants, Effect of X-rays on
Resumo:
Copper exhibits high thermal conductivity properties and hence it is extensively used in cryogenic applications like cold fingers, heat exchangers, etc. During the realization of such components, copper undergoes various machining operations from the raw material stage to the final component. During these machining processes, stresses are induced within the metal resulting in internal stresses, strains and dislocations. These effects build up resistance paths for the heat carriers which transfer heat from one location to the other. This in turn, results in reduction of thermal conductivity of the conducting metal and as a result the developed component will not perform as per expectations. In the process of cryogenic treatment, the metal samples are exposed to cryogenic temperature for extended duration of time for 24 hours and later tempered. During this process, the internal stresses and strains are reduced with refinement of the atomic structure. These effects are expected to favourably improve thermal conductivity properties of the metal. In this experimental work, OFHC copper samples were cryotreated for 24 hours at 98 K and part of them were tempered at 423K for one hour. Significant enhancement of thermal conductivity values were observed after cryotreating and tempering the copper samples.
Resumo:
The effect of oxygen pressure (P-O2) on the Yttrium Iron Garnet (YIG) thin films were grown on silicon substrate by rf sputtering method was studied. The as-deposited films at 300K were amorphous in nature. The crystallization of these films was achieved by annealing at a temperature of 800 degrees C/1hr in air. The structural, microstructural and magnetic properties were found to be dependent on P-O2.
Resumo:
This paper attempts a quantitative understanding of the effect of length scale on two phase eutectic structure. We first develop a model that considers both the elastic and plastic properties of the interface. Using Al-Al2Cu lamellar eutectic as model system, the parameters of the model were experimentally determined using indentation technique. The model is further validated using the results of bulk compression testing of the eutectics having different length scales. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4761944]
Resumo:
Present trend of semi-solid processing is directed towards rheocasting route which allows manufacturing of near-net-shape cast components directly from the prepared semi-solid slurry. Generation of globular equi-axed grains during solidification of rheocast components, compared to the columnar dendritic structure of conventional casting routes, facilitates the manufacturing of components with improved mechanical properties and structural integrity. In the present investigation, a cooling slope has been designed and indigenously fabricated to produce semi solid slurry of Al-Si-Mg (A356) alloy and successively cast in a metallic mould. The scope of the present work discusses about development of a numerical model to simulate the liquid metal flow through cooling slope using Eulerian two-phase flow approach and to investigate the effect of pouring temperature on cooling slope semi-solid slurry generation process. The two phases considered in the present model are liquid metal and air. Solid fraction evolution of the solidifying melt is tracked at different locations of the cooling slope, following Schiel's equation. The continuity equation, momentum equation and energy equation are solved considering thin wall boundary condition approach. During solidification of the liquid metal, a modified temperature recovery scheme has been employed taking care of the latent heat release and change of fraction of liquid. The results obtained from simulations are compared with experimental findings and good agreement has been found.
Resumo:
The paper reports the effect of addition of small amount of Mg on the mechanical and oxidation properties of Nb-Nb3Si eutectic composites in Nb-Si system under the condition of suction casting. Mg addition increases the volume fraction of primary dendrites of Nb solid solution. This phase contains significant amount of strengthening precipitates. Two different precipitates are identified. The large plate shaped precipitates are that of hcp phase, while fine coherent precipitates have the structure similar to recently identified delta-Nb11Si2 phase. The Mg addition improves both the strength and ductility of the composite at room temperature (similar to 1.4 GPa and similar to 5% engineering strain) as well as at 700 degrees C(similar to 1.2 GPa and similar to 7% engineering strain). The presence of Mg results in a complex barrier layer which significantly increases the oxidation resistance up to a temperature of at least 1000 degrees C. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Substitution plays an important role in determining the triplet state reactivity. In this paper, we have studied the effect of chlorine substitution on the triplet state structure and the reactivity of thioxanthone (TX). We have employed time-resolved resonance Raman technique to understand the structure of the lowest triplet excited state of 2-chlorothioxanthone (CTX). The experimental findings have been corroborated with the computational results using density functional theory. Akin to the parent compound (TX), coexistence of two lowest triplet states has been observed in case of CTX, which has been substantiated using resonant probe wavelength dependence study. The relative contribution of 3n-pi* to 3 pi-pi* to the equilibrated triplet state has been found to be more for CTX compared to TX suggesting increase in the triplet state reactivity after the substitution. The above observation has been further supported by the flash photolysis experiments. Copyright (C) 2013 John Wiley & Sons, Ltd.
Resumo:
We have studied the effect of dendrimer generation on the interaction between dsDNA and the PAMAM dendrimer using force biased simulation of dsDNA with three generations of dendrimer: G3, G4, and G5. Our results for the potential of mean force (PMF) and the dendrimer asphericity along the binding pathway, combined with visualization of the simulations, demonstrate that dendrimer generation has a pronounced impact on the interaction. The PMF increases linearly with increasing generation of the dendrimer. While, in agreement with previous results, we see an increase in the extent to which the dendrimer bends the dsDNA with increasing dendrimer generation, we also see that the deformation of the dendrimer is greater with smaller generation of the dendrimer. The larger dendrimer forces the dsDNA to conform to its structure, while the smaller dendrimer is forced to conform to the structure of the dsDNA. Monitoring the number of bound cations at different values of force bias distance shows the expected effect of ions being expelled when the dendrimer binds dsDNA.
Resumo:
Li+-doped Gd2O3:Eu3+ phosphors have been studied as potential red phosphors for application to field emission displays. The Li+-doped and undoped Gd2O3:Eu3+ phosphors were synthesized by low temperature solution combustion method. The enhanced luminescence was regarded as the result of the creation of oxygen vacancies due to the Gd3+ sites occupied by Li+ ions, the alteration of the crystal field surrounding the activator Eu3+ ions owing to the incorporation of Li+ into interstial sites. The result in a remarkable increase on photoluminescence and the strong emission was observed at 612 nm by a factor of 4.1 in comparison with that of undoped sample.
Resumo:
Red light emitting cubic Y1.95Eu0.05O3 nanophosphors have been synthesized by a low temperature solution combustion method using ethylene diamine tetra acetic acid (EDTA) as fuel. The systematic studies on the effect of calcination temperature on its structural, photoluminescence (PL), and thermoluminescence (TL) properties were reported. The crystallinity of the samples increases, and the strain is reduced with increasing calcination temperature. SEM micrographs reveal that samples lose their porous nature with an increase in calcination temperature. PL spectra show that the intensity of the red emission (611 nm) is highly dependent on the calcination temperature and is found to be 10 times higher when compared to as-formed samples. The optical band gap (E-g) was found to reduce with an increase of calcination temperature due to reduction of surface defects. The thermoluminescence (TL) intensity was found to be much enhanced in the 1000 degrees C calcined sample. The increase of PL and TL intensity with calcination temperature is attributed to the decrease of the nonradiative recombination probability, which occurs through the elimination of quenching defects. The trap parameters (E, b, s) were estimated from Chen's glow peak shape method and are discussed in detail for their possible usage in dosimetry.
Resumo:
There have been several studies on the performance of TCP controlled transfers over an infrastructure IEEE 802.11 WLAN, assuming perfect channel conditions. In this paper, we develop an analytical model for the throughput of TCP controlled file transfers over the IEEE 802.11 DCF with different packet error probabilities for the stations, accounting for the effect of packet drops on the TCP window. Our analysis proceeds by combining two models: one is an extension of the usual TCP-over-DCF model for an infrastructure WLAN, where the throughput of a station depends on the probability that the head-of-the-line packet at the Access Point belongs to that station; the second is a model for the TCP window process for connections with different drop probabilities. Iterative calculations between these models yields the head-of-the-line probabilities, and then, performance measures such as the throughputs and packet failure probabilities can be derived. We find that, due to MAC layer retransmissions, packet losses are rare even with high channel error probabilities and the stations obtain fair throughputs even when some of them have packet error probabilities as high as 0.1 or 0.2. For some restricted settings we are also able to model tail-drop loss at the AP. Although involving many approximations, the model captures the system behavior quite accurately, as compared with simulations.
Resumo:
In the present study, the effect of iodine concentration on the photovoltaic properties of dye sensitized solar cells (DSSC) based on TiO2 nanoparticles for three different ratios of lithium iodide (LiI) and iodine (I-2) has been investigated. The electron transport properties and interfacial recombination kinetics have been evaluated by electrochemical impedance spectroscopy (EIS). It is found that increasing the concentration of lithium iodide for all ratios of iodine and lithium iodide decreases the open-circuit voltage (V-oc) whereas short circuit current density (J(sc)) and fill factor (FF) shows improvement. The reduction in V-oc and increment in J(sc) is ascribed to the higher concentration of absorptive Li+ cations which shifts the conduction band edge of TiO2 positively. The increase in FF is due to the reduction in electron transport resistance (R-omega) of the cell. In addition for all the ratios of LiI/I-2 increasing the concentration of I-2 decreases the V-oc which is attributed to the increased recombination with tri-iodide ions (I-3(-)) as verified from the low recombination resistance (R-k) and electron lifetime (tau) values obtained by EIS analysis. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Microstructural evolution was studied in a near-lamellar two phase (alpha(2) + gamma) Ti-47Al-2Cr-2Nb alloy under high temperature creep and exposure conditions. The aim of this study was to probe the role of stress orientation, with respect to lamellar plates, on microstructural changes during primary creep. Creep testing was complemented with SEM and TEM based microstructural characterization. It was observed that retention of excess alpha(2) resulted in an unstable microstructure. Under stress and temperature, excess alpha(2) was lost and Cr-rich precipitates formed. Depending on stress orientation, the sequence of precipitates formed was different. alpha(2) loss was accompanied by formation of the non-equilibrium C14 Laves phase when lamellar plates were oriented parallel to the stress axis. In contrast, alpha(2) loss did not result in formation of the C14 phase in perpendicular samples. It was concluded that C14 formed preferentially in certain test orientations because of its effectiveness in relieving residual stresses in alpha(2) that arose from lattice misfit and modulus mismatch. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Electromigration (EM)-induced interfacial sliding between a metal film and Si substrate occurs when (i) only few grains exist across the width of the film and (ii) diffusivity through the interfacial region is significantly greater than diffusivity through the film. Here, the effect of the substrate surface layer on the kinetics of EM-induced interfacial sliding is assessed using Si substrates coated with various thin film interlayers. The kinetics of interfacial sliding, and therefore the EM-driven mass flow rate, strongly depends on the type of the interlayer (and hence the substrate surface composition), such that strongly bonded interfaces with slower interfacial diffusivity produce slower sliding.
Resumo:
The paper reports effect of small ternary addition of In on the microstructure, mechanical property and oxidation behaviour of a near eutectic suction cast Nb-19.1 at-%Si-1.5 at-%In alloy. The observed microstructure consists of a combination of two kinds of lamellar structure. They are metal-intermetallic combinations of Nb-ss-beta-Nb5Si3 and Nb-ss-alpha-Nb5Si3 respectively having 40-60 nm lamellar spacings. The alloy gives compressive strength of 3 GPa and engineering strain of similar to 3% at room temperature. The composite structure also exhibits a large improvement in oxidation resistance at high temperature (1000 degrees C).
Resumo:
The signal peptide plays a key role in targeting and membrane insertion of secretory and membrane proteins in both prokaryotes and eukaryotes. In E. coli, recombinant proteins can be targeted to the periplasmic space by fusing naturally occurring signal sequences to their N-terminus. The model protein thioredoxin was fused at its N-terminus with malE and pelB signal sequences. While WT and the pelB fusion are soluble when expressed, the malE fusion was targeted to inclusion bodies and was refolded in vitro to yield a monomeric product with identical secondary structure to WT thioredoxin. The purified recombinant proteins were studied with respect to their thermodynamic stability, aggregation propensity and activity, and compared with wild type thioredoxin, without a signal sequence. The presence of signal sequences leads to thermodynamic destabilization, reduces the activity and increases the aggregation propensity, with malE having much larger effects than pelB. These studies show that besides acting as address labels, signal sequences can modulate protein stability and aggregation in a sequence dependent manner.