962 resultados para Plant water relationships


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pharmaceuticals are useful tools to prevent and treat human and animal diseases. Following administration, a significant fraction of pharmaceuticals is excreted unaltered into faeces and urine and may enter the aquatic ecosystem and agricultural soil through irrigation with recycled water, constituting a significant source of emerging contaminants into the environment. Understanding major factors influencing their environmental fate is consequently needed to value the risk, reduce contamination, and set up bioremediation technologies. The antiviral drug Tamiflu (oseltamivir carboxylate, OC) has received recent attention due to the potential use as a first line defence against H5N1 and H1N1 influenza viruses. Research has shown that OC is not removed during conventional wastewater treatments, thus having the potential to enter surface water bodies. A series of laboratory experiments investigated the fate and the removal of OC in surface water systems in Italy and Japan and in a municipal wastewater treatment plant. A preliminary laboratory study investigated the persistence of the active antiviral drug in water samples from an irrigation canal in northern Italy (Canale Emiliano Romagnolo). After an initial rapid decrease, OC concentration slowly decreased during the remaining incubation period. Approximately 65% of the initial OC amount remained in water at the end of the 36-day incubation period. A negligible amount of OC was lost both from sterilized water and from sterilized water/sediment samples, suggesting a significant role of microbial degradation. Stimulating microbial processes by the addition of sediments resulted in reduced OC persistence. Presence of OC (1.5 μg mL-1) did not significantly affect the metabolic potential of the water microbial population, that was estimated by glyphosate and metolachlor mineralization. In contrast, OC caused an initial transient decrease in the size of the indigenous microbial population of water samples. A second laboratory study focused on basic processes governing the environmental fate of OC in surface water from two contrasting aquatic ecosystems of northern Italy, the River Po and the Venice Lagoon. Results of this study confirmed the potential of OC to persist in surface water. However, the addition of 5% of sediments resulted in rapid OC degradation. The estimated half-life of OC in water/sediment of the River Po was 15 days. After three weeks of incubation at 20 °C, more than 8% of 14C-OC evolved as 14CO2 from water/sediment samples of the River Po and Venice Lagoon. OC was moderately retained onto coarse sediments from the two sites. In water/sediment samples of the River Po and Venice Lagoon treated with 14C-OC, more than 30% of the 14C-residues remained water-extractable after three weeks of incubation. The low affinity of OC to sediments suggests that the presence of sediments would not reduce its bioavailability to microbial degradation. Another series of laboratory experiments investigated the fate and the removal of OC in two surface water ecosystems of Japan and in the municipal wastewater treatment plant of the city of Bologna, in Northern Italy. The persistence of OC in surface water ranged from non-detectable degradation to a half-life of 53 days. After 40 days, less than 3% of radiolabeled OC evolved as 14CO2. The presence of sediments (5%) led to a significant increase of OC degradation and of mineralization rates. A more intense mineralization was observed in samples of the wastewater treatment plant when applying a long incubation period (40 days). More precisely, 76% and 37% of the initial radioactivity applied as 14C-OC was recovered as 14CO2 from samples of the biological tank and effluent water, respectively. Two bacterial strains growing on OC as sole carbon source were isolated and used for its removal from synthetic medium and environmental samples, including surface water and wastewater. Inoculation of water and wastewater samples with the two OC-degrading strains showed that mineralization of OC was significantly higher in both inoculated water and wastewater, than in uninoculated controls. Denaturing gradient gel electrophoresis and quantitative PCR analysis showed that OC would not affect the microbial population of surface water and wastewater. The capacity of the ligninolytic fungus Phanerochaete chrysosporium to degrade a wide variety of environmentally persistent xenobiotics has been largely reported in literature. In a series of laboratory experiments, the efficiency of a formulation using P. chrysosporium was evaluated for the removal of selected pharmaceuticals from wastewater samples. Addition of the fungus to samples of the wastewater treatment plant of Bologna significantly increased (P < 0.05) the removal of OC and three antibiotics, erythromycin, sulfamethoxazole, and ciprofloxacin. Similar effects were also observed in effluent water. OC was the most persistent of the four pharmaceuticals. After 30 days of incubation, approximately two times more OC was removed in bioremediated samples than in controls. The highest removal efficiency of the formulation was observed with the antibiotic ciprofloxacin. The studies included environmental aspects of soil contamination with two emerging veterinary contaminants, such as doramectin and oxibendazole, wich are common parasitic treatments in cattle farms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fire blight, caused by the gram negative bacterium Erwinia amylovora, is one of the most destructive bacterial diseases of Pomaceous plants. Therefore, the development of reliable methods to control this disease is desperately needed. This research investigated the possibility to interfere, by altering plant metabolism, on the interactions occurring between Erwinia amylovora, the host plant and the epiphytic microbial community in order to obtain a more effective control of fire blight. Prohexadione-calcium and trinexapac-ethyl, two dioxygenase inhibitors, were chosen as a chemical tool to influence plant metabolism. These compounds inhibit the 2-oxoglutarate-dependent dioxygenases and, therefore, they greatly influence plant metabolism. Moreover, dioxygenase inhibitors were found to enhance plant resistance to a wide range of pathogens. In particular, dioxygenase inhibitors application seems a promising method to control fire blight. From cited literature, it is assumed that these compounds increase plant defence mainly by a transient alteration of flavonoids metabolism. We tried to demonstrate, that the reduction of susceptibility to disease could be partially due to an indirect influence on the microbial community established on plant surface. The possibility to influence the interactions occurring in the epiphytic microbial community is particularly interesting, in fact, the relationships among different bacterial populations on plant surface is a key factor for a more effective biological control of plant diseases. Furthermore, we evaluated the possibility to combine the application of dioxygenase inhibitors with biological control in order to develop an integrate strategy for control of fire blight. The first step for this study was the isolation of a pathogenic strain of E. amylovora. In addition, we isolated different epiphytic bacteria, which respond to general requirements for biological control agents. Successively, the effect of dioxygenase inhibitors treatment on microbial community was investigated on different plant organs (stigmas, nectaries and leaves). An increase in epiphytic microbial population was found. Further experiments were performed with aim to explain this effect. In particular, changes in sugar content of nectar were observed. These changes, decreasing the osmotic potential of nectar, might allow a more consistent growth of epiphytic bacteria on blossoms. On leaves were found similar differences as well. As far as the interactions between E. amylovora and host plant, they were deeply investigated by advanced microscopical analysis. The influence of dioxygenase inhibitors and SAR inducers application on the infection process and migration of pathogen inside different plant tissues was studied. These microscopical techniques, combined with the use of gpf-labelled E. amylovora, allowed the development of a bioassay method for resistance inducers efficacy screening. The final part of the work demonstrated that the reduction of disease susceptibility observed in plants treated with prohexadione-calcium is mainly due to the accumulation of a novel phytoalexins: luteoforol. This 3-deoxyflavonoid was proven to have a strong antimicrobial activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the quickest plant movements ever known is made by the ´explosive´ style in Marantaceae in the service of secondary pollen presentation – herewith showing a striking apomorphy to the sister Cannaceae that might be of high evolutionary consequence. Though known already since the beginning of the 19th century the underlying mechanism of the movement has hitherto not been clarified. The present study reports about the biomechanics of the style-staminode complex and the hydraulic principles of the movement. For the first time it is shown by experiment that in Maranta noctiflora through longitudinal growth of the maturing style in the ´straitjacket´ of the hooded staminode both the hold of the style prior to its release and its tensioning for the movement are brought about. The longer the style grows in relation to the enclosing hooded staminode the more does its capacity for curling up for pollen transfer increase. Hereby I distinguish between the ´basic tension´ that a growing style builds up anyway, even when the hooded staminode is removed beforehand, and the ´induced tension´ which comes about only under the pressure of a ´too short´ hooded staminode and which enables the movement. The results of these investigations are discussed in view of previous interpretations ranging from possible biomechanical to electrophysiological mechanisms. To understand furthermore by which means the style gives way to the strong bending movement without suffering outwardly visible damage I examined its anatomical structure in several genera for its mechanical and hydraulic properties and for the determination of the entire curvature after release. The actual bending part contains tubulate cells whose walls are extraordinarily porous and large longitudinal intercellular spaces. SEM indicates the starting points of cell-wall loosening in primary walls and lysis of middle lamellae - probably through an intense pectinase activity in the maturing style. Fluorescence pictures of macerated and living style-tissue confirm cell-wall perforations that do apparently connect neighbouring cells, which leads to an extremely permeable parenchyma. The ´water-body´ can be shifted from central to dorsal cell layers to support the bending. The geometrical form of the curvature is determined by the vascular bundles. I conclude that the style in Marantaceae contains no ´antagonistic´ motile tissues as in Mimosa or Dionaea. Instead, through self-maceration it develops to a ´hydraulic tissue´ which carries out an irreversible movement through a sudden reshaping. To ascertain the evolutionary consequence of this apomorphic pollination mechanism the diversity and systematic value of hooded staminodes are examined. For this hooded staminodes of 24 genera are sorted according to a minimalistic selection of shape characters and eight morphological types are abstracted from the resulting groups. These types are mapped onto an already available maximally parsimonious tree comprising five major clades. An amazing correspondence is found between the morphological types and the clades; several sister-relationships are confirmed and in cases of uncertain position possible evolutionary pathways, such as convergence, dispersal or re-migration, are discussed, as well as the great evolutionary tendencies for the entire family in which – at least as regards the shape of hooded staminodes – there is obviously a tendency from complicated to strongly simplified forms. It suggests itself that such simplifying derivations may very likely have taken place as adaptations to pollinating animals about which at present too little is known. The value of morphological characters in relation to modern phylogenetic analysis is discussed and conditions for the selection of morphological characters valuable for a systematic grouping are proposed. Altogether, in view of the evolutionary success of Marantaceae compared with Cannaceae the movement mechanism of the style-staminode complex can safely be considered a key innovation within the order Zingiberales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die Verbreitung von Vögeln kann von sehr unterschiedlichen Faktoren (z.B. Habitatstruktur, Klima, Nahrungsverfügbarkeit, Evolutionsgeschichte) beeinflusst werden, die zudem auf verschiedenen räumlichen Skalen (lokal bis global) unterschiedlich wirken. In dieser Dissertation wurde die Artenvielfalt früchtefressender Vogelarten auf regionalem, kontinentalem und globalem Maßstab untersucht und getestet ob sie von Habitatstruktur (Landnutzung, Topographie, Vegetationsstruktur), Klima (Temperatur, Niederschlag, Evapotranspiration), Nahrungsressourcen (früchtetragende Baumarten), oder historischen Faktoren (biogeographische Region) bestimmt wird. Dazu wurden umfangreiche geographische Datenbanken auf verschiedenen räumlichen Skalen, d.h. auf regionalem (Kenia), kontinentalem (Afrika), und globalem (Welt) Maßstab, ausgewertet, die die Verbreitung aller Vogelarten und wichtiger Umweltfaktoren enthalten. Statistische Analysen auf globalem Maßstab zeigten, dass die Verbreitung von Früchtefressern sehr gut mit klimatischen Variablen, insbesondere aktueller Evapotranspiration und Produktivität, beschrieben werden kann. Unterschiede zwischen biogeographischen Regionen bleiben jedoch bestehen auch wenn für klimatische Unterschiede zwischen den Regionen korrigiert wird. Weiter zeigen unterschiedliche Ordnungen mit früchtefressenden Vogelarten unterschiedliche Diversifizierungsmuster. Dies deutet darauf hin, dass auch historische Faktoren, wie die Klima- und Evolutionsgeschichte, eine wichtige Rolle spielen. Analysen auf regionalem und kontinentalem Maßstab legen nahe, dass klimatische Faktoren im Wesentlichen indirekt auf die Artenvielfalt von Früchtefressern wirken, und zwar durch funktionelle Beziehungen zwischen Früchtefressern und Bäumen (z.B. trophische Interaktionen mit wichtigen Nahrungspflanzen, Vegetationsstruktur). Die Ergebnisse dieser Dissertation zeigen, dass biotische Interaktionen, direkte und indirekte klimatische Effekte, und das Zusammenwirken von Evolutionsgeschichte und heutigen Umweltbedingungen untersucht werden müssen um den Artenreichtum von Vögeln auf großem räumlichem Maßstab zu verstehen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vancomycin-resistente Enterokokken (VRE) treten als Erreger von nosokomialen Infektionen immer häufiger auf und schränken die Therapiemöglichkeiten deutlich ein. In den eigenen Untersuchungen wurde das Vorkommen von Vancomycin-resistenten Enterococcus faecium (VREf) bei Patienten und in der aquatischen Umwelt (Abwasser und Oberflächenwasser) über einen Zeitraum von sechs Jahren (2004 bis 2009) untersucht. Eine Genotypisierung mittels Pulsfeld-Gelelektrophorese (PFGE) von 294 VREf sollte Aufschluss über genetische Verwandtschaften geben. rnEs konnte gezeigt werden, dass VREf in der aquatischen Umwelt weit verbreitet sind. In Bezug auf ihre genetische Diversität zeigten sie ein breites Spektrum an Variabilität. Ebenso konnte im zeitlichen Auftreten von VREf-Typen eine Dynamik beobachtet werden, wodurch sich Veränderungen der Population mit zeitlichem Wechsel ergaben. Enge Verwandtschaften zwischen VREf von Patienten und VREf aus der aquatischen Umwelt konnten nachgewiesen werden. Für zwei VREf gelang der Nachweis des Eintrags in die aquatische Umwelt, von Patienten aus dem Krankenhaus als Eintragsquelle ausgehend, während Zeiten eines Ausbruchs mit nosokomialen Erregern auf den Stationen. rnZusätzlich zur VREf-Population wurden außerdem die Wirkungsweise und Effizienz einer Elektroimpulsanlage untersucht, um ein zukunftsorientiertes Verfahren zur Desinfektion von bakteriell belasteten Abwässern zu entwickeln. Weiterführend wurde getestet, inwiefern sich verschiedene klinisch relevante VREf durch ein gepulstes elektrisches Feld abtöten lassen. rnEs konnte gezeigt werden, dass das synergistische Zusammenwirken des elektrischen Feldes und der Prozesstemperatur die Höhe der Keimzahlreduktion der Enterokokken beeinflussen. Dabei wurde eine isolatabhängige Elektroresistenz der VREf gegenüber gepulsten elektrischen Feldern bewiesen. Die untersuchten VREf ließen sich, im Gegensatz zu einem Vancomycin-sensiblen Stamm, nicht effizient durch die Elektroimpulsanlage abtöten, was den praktischen Einsatz einer solchen Elektroimpulsanlage als wirkungsvolles Desinfektionsverfahren in Frage stellte.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the changes in soil fertility due to the different aggregate breakdown mechanisms and it analyses their relationships in different soil-plant systems, using physical aggregates behavior and organic matter (OM) changes as indicators. Three case studies were investigated: i) an organic agricultural soil, where a combined method, aimed to couple aggregate stability to nutrients loss, were tested; ii) a soil biosequence, where OM chemical characterisation and fractionation of aggregates on the basis of their physical behaviour were coupled and iii) a soils sequence in different phytoclimatic conditions, where isotopic C signature of separated aggregates was analysed. In agricultural soils the proposed combined method allows to identify that the severity of aggregate breakdown affected the quantity of nutrients lost more than nutrients availability, and that P, K and Mg were the most susceptible elements to water abrasion, while C and N were mainly susceptible to wetting. In the studied Chestnut-Douglas fir biosequence, OM chemical properties affected the relative importance of OM direct and indirect mechanisms (i.e., organic and organic-metallic cements, respectively) involved in aggregate stability and nutrient losses: under Douglas fir, high presence of carboxylate groups enhanced OM-metal interactions and stabilised aggregates; whereas under Chestnut, OM directly acted and fresh, more C-rich OM was preserved. OM direct mechanism seemed to be more efficient in C preservation in aggregates. The 13C natural abundance approach showed that, according to phytoclimatic conditions, stable macroaggregates can form both around partially decomposed OM and by organic-mineral interactions. In topsoils, aggregate resistance enhanced 13C-rich OM preservation, but in subsoils C preservation was due to other mechanisms, likely OM-mineral interactions. The proposed combined approach seems to be useful in the understanding of C and nutrients fate relates to water stresses, and in future research it could provide new insights into the complexity of soil biophysical processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Minor components are of particular interest due to their antioxidant and biological properties. Various classes of lipophilic minor components (plant sterols (PS) and α-tocopherol) were selected as they are widely used in the food industry. A Fast GC-MS method for PS analysis in functional dairy products was set up. The analytical performance and significant reduction of the analysis time and consumables, demonstrated that Fast GC-MS could be suitable for the PS analysis in functional dairy products. Due to their chemical structure, PS can undergo oxidation, which could be greatly impacted by matrix nature/composition and thermal treatments. The oxidative stability of PS during microwave heating was evaluated. Two different model systems (PS alone and in combination) were heated up to 30 min at 1000 W. PS degraded faster when they were alone than in presence of TAG. The extent of PS degradation depends on both heating time and the surrounding medium, which can impact the quality and safety of the food product destined to microwave heating/cooking. Many minor lipid components are included in emulsion systems and can affect the rate of lipid oxidation. The oxidative stability of oil-in-water (O/W) emulsions containing PS esters, ω-3 FA and phenolic compounds, were evaluated after a 14-day storage at room temperature. Due to their surface active character, PS could be particularly prone to oxidation when they are incorporated in emulsions, as they are more exposed to water-soluble prooxidants. Finally, some minor lipophilic components may increase oxidative stability of food systems due to their antioxidant activity. á-tocopherol partitioning and antioxidant activity was determined in the presence of excess SDS in stripped soybean O/W emulsions. Results showed that surfactant micelles could play a key role as an antioxidant carrier, by potentially increasing the accessibility of hydrophobic antioxidant to the interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Italy has a preeminent rank in kiwifruit industry, being the first exporter and the second largest producer after China. However, in the last years kiwifruit yields and the total cultivated area considerably decreased, due to the pandemic spread of the bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa). Several climatic conditions and cultural practices affect the development of the bacterial canker. This research work focused on the impact of agricultural practices and microclimate conditions on the incidence and epidemiology of Psa in the orchard. Therefore, the effect of fertilization, irrigation, use of bio-regulators, rootstock, training system and pruning were examined. The effect of different tunnel systems was analyzed as well, to study the plant-pathogen interaction. Considering the importance of insects as vectors in other pathosystems, the role of Metcalfa pruinosa in the spread of the bacterial canker was investigated in controlled conditions. In addition, quality and storage properties of fruits from infected plants were assessed. The study of all these aspects of the agronomic practices is useful to define a strategy to limit the bacterial diffusion in the orchard. Overall, excess nitrogen fertilization, water stress, stagnant water supplies, pruning before summer and the high number of Metcalfa pruinosa increased the Psa incidence. In contrast, tunnel covers may be useful for the control of the disease, with special attention to the kind of material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salt marshes are coastal ecosystem in the upper intertidal zone between internal water and sea and are widely spread throughout Italy, from Friuli Venezia Giulia, in the North, to Sicily, in the South. These delicate environments are threatened by eutrophication, habitat conversion (for land reclaiming or agriculture) and climate change impacts such as sea level rise. The objectives of my thesis were to: 1) analyse the distribution and biomass of the perennial native cordgrass Spartina maritima (one of the most relevant foundation species in the low intertidal saltmarsh vegetation in the study region) at 7 sites along the Northern Adriatic coast and relate it to critical environmental parameters and 2) to carry out a nutrient manipulation experiment to detect nutrient enrichment effects on S. maritima biomass and vegetation characteristics. The survey showed significant differences among sites in biological response variables - i.e., live belowground, live aboveground biomass, above:belowground (R:S) biomass ratio, % cover, average height and stem density – which were mainly related to differences in nitrate, nitrite and phosphate contents in surface water. Preliminary results from the experiment (which is still ongoing) showed so far no significant effects of nutrient enrichment on live aboveground and belowground biomass, R:S ratio, leaf %Carbon, average height, stem density and random shoot height; however, a significantly higher (P=0.018) increase in leaf %Nitrogen content in treated plots indicated that nutrient uptake had occurred.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowledge of the fate of deposited N in the possibly N-limited, highly biodiverse north Andean forests is important because of the possible effects of N inputs on plant performance and species composition. We analyzed concentrations and fluxes of NO3 −–N, NH4 +–N and dissolved organic N (DON) in rainfall, throughfall, litter leachate, mineral soil solutions (0.15–0.30 m depths) and stream water in a montane forest in Ecuador during four consecutive quarters and used the natural 15N abundance in NO3 − during the passage of rain water through the ecosystem and bulk δ15N values in soil to detect N transformations. Depletion of 15N in NO3 − and increased NO3 −–N fluxes during the passage through the canopy and the organic layer indicated nitrification in these compartments. During leaching from the organic layer to mineral soil and stream, NO3 − concentrations progressively decreased and were enriched in 15N but did not reach the δ15N values of solid phase organic matter (δ15N = 5.6–6.7‰). This suggested a combination of nitrification and denitrification in mineral soil. In the wettest quarter, the δ15N value of NO3 − in litter leachate was smaller (δ15N = −1.58‰) than in the other quarters (δ15N = −9.38 ± SE 0.46‰) probably because of reduced mineralization and associated fractionation against 15N. Nitrogen isotope fractionation of NO3 − between litter leachate and stream water was smaller in the wettest period than in the other periods probably because of a higher rate of denitrification and continuous dilution by isotopically lighter NO3 −–N from throughfall and nitrification in the organic layer during the wettest period. The stable N isotope composition of NO3 − gave valuable indications of N transformations during the passage of water through the forest ecosystem from rainfall to the stream.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study how species richness of arthropods relates to theories concerning net primary productivity, ambient energy, water-energy dynamics and spatial environmental heterogeneity. We use two datasets of arthropod richness with similar spatial extents (Scandinavia to Mediterranean), but contrasting spatial grain (local habitat and country). Samples of ground-dwelling spiders, beetles, bugs and ants were collected from 32 paired habitats at 16 locations across Europe. Species richness of these taxonomic groups was also determined for 25 European countries based on the Fauna Europaea database. We tested effects of net primary productivity (NPP), annual mean temperature (T), annual rainfall (R) and potential evapotranspiration of the coldest month (PETmin) on species richness and turnover. Spatial environmental heterogeneity within countries was considered by including the ranges of NPP, T, R and PETmin. At the local habitat grain, relationships between species richness and environmental variables differed strongly between taxa and trophic groups. However, species turnover across locations was strongly correlated with differences in T. At the country grain, species richness was significantly correlated with environmental variables from all four theories. In particular, species richness within countries increased strongly with spatial heterogeneity in T. The importance of spatial heterogeneity in T for both species turnover across locations and for species richness within countries suggests that the temperature niche is an important determinant of arthropod diversity. We suggest that, unless climatic heterogeneity is constant across sampling units, coarse-grained studies should always account for environmental heterogeneity as a predictor of arthropod species richness, just as studies with variable area of sampling units routinely consider area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Worldwide, rural populations are far less likely to have access to clean drinking water than are urban ones. In many developing countries, the current approach to rural water supply uses a model of demand-driven, community-managed water systems. In Suriname, South America rural populations have limited access to improved water supplies; community-managed water supply systems have been installed in several rural communities by nongovernmental organizations as part of the solution. To date, there has been no review of the performance of these water supply systems. This report presents the results of an investigation of three rural water supply systems constructed in Saramaka villages in the interior of Suriname. The investigation used a combination of qualitative and quantitative methods, coupled with ethnographic information, to construct a comprehensive overview of these water systems. This overview includes the water use of the communities, the current status of the water supply systems, histories and sustainability of the water supply projects, technical reviews, and community perceptions. From this overview, factors important to the sustainability of these water systems were identified. Community water supply systems are engineered solutions that operate through social cooperation. The results from this investigation show that technical adequacy is the first and most critical factor for long-term sustainability of a water system. It also shows that technical adequacy is dependent on the appropriateness of the engineering design for the social, cultural, and natural setting in which it takes place. The complex relationships between technical adequacy, community support, and the involvement of women play important roles in the success of water supply projects. Addressing these factors during the project process and taking advantage of alternative water resources may increase the supply of improved drinking water to rural communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the Dominican Republic economic growth in the past twenty years has not yielded sufficient improvement in access to drinking water services, especially in rural areas where 1.5 million people do not have access to an improved water source (WHO, 2006). Worldwide, strategic development planning in the rural water sector has focused on participatory processes and the use of demand filters to ensure that service levels match community commitment to post-project operation and maintenance. However studies have concluded that an alarmingly high percentage of drinking water systems (20-50%) do not provide service at the design levels and/or fail altogether (up to 90%): BNWP (2009), Annis (2006), and Reents (2003). World Bank, USAID, NGOs, and private consultants have invested significant resources in an effort to determine what components make up an “enabling environment” for sustainable community management of rural water systems (RWS). Research has identified an array of critical factors, internal and external to the community, which affect long term sustainability of water services. Different frameworks have been proposed in order to better understand the linkages between individual factors and sustainability of service. This research proposes a Sustainability Analysis Tool to evaluate the sustainability of RWS, adapted from previous relevant work in the field to reflect the realities in the Dominican Republic. It can be used as a diagnostic tool for government entities and development organizations to characterize the needs of specific communities and identify weaknesses in existing training regimes or support mechanisms. The framework utilizes eight indicators in three categories (Organization/Management, Financial Administration, and Technical Service). Nineteen independent variables are measured resulting in a score of sustainability likely (SL), possible (SP), or unlikely (SU) for each of the eight indicators. Thresholds are based upon benchmarks from the DR and around the world, primary data collected during the research, and the author’s 32 months of field experience. A final sustainability score is calculated using weighting factors for each indicator, derived from Lockwood (2003). The framework was tested using a statistically representative geographically stratified random sample of 61 water systems built in the DR by initiatives of the National Institute of Potable Water (INAPA) and Peace Corps. The results concluded that 23% of sample systems are likely to be sustainable in the long term, 59% are possibly sustainable, and for 18% it is unlikely that the community will be able to overcome any significant challenge. Communities that were scored as unlikely sustainable perform poorly in participation, financial durability, and governance while the highest scores were for system function and repair service. The Sustainability Analysis Tool results are verified by INAPA and PC reports, evaluations, and database information, as well as, field observations and primary data collected during the surveys. Future research will analyze the nature and magnitude of relationships between key factors and the sustainability score defined by the tool. Factors include: gender participation, legal status of water committees, plumber/operator remuneration, demand responsiveness, post construction support methodologies, and project design criteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reed canary grass (Phalaris arundinacea L.) is an invasive species originally from Europe that has now expanded to a large range within the United States. Reed canary grass possesses a number of traits that allow it to thrive in a wide range of environmental factors, including high rates of sedimentation, bouts of flooding, and high levels of nutrient inputs. Therefore, the goals of our study were to determine if 1) certain types of wetland were more susceptible to Reed canary grass invasion, and 2) disturbances facilitated Reed canary grass invasion. This study was conducted within the Keweenaw Bay Indian Community reservation in the Upper Peninsula of Michigan, in Baraga County. We selected 28 wetlands for analysis. At each wetland, we identified and sampled distinct vegetative communities and their corresponding environmental attributes, which included water table depth, pH, conductivity, calcium and magnesium concentrations, and percent organic matter. Disturbances at each site were catalogued and their severity estimated with the aid of aerial photos. A GIS dataset containing information about the location of Reed canary grass within the study wetlands, the surrounding roads and the level of roadside Reed canary grass invasion was also developed. In all, 287 plant species were identified and classified into 16 communities, which were then further grouped into three broad groupings of wetlands: nonforested graminoid, Sphagnum peatlands, and forested wetlands. The two most common disturbances identified were roads and off-road recreation trails, both occurring at 23 of the 28 sites. Logging activity surrounding the wetlands was the next most common disturbance and was found at 18 of the sites. Occurrence of Reed canary grass was most common in the non-forested graminoid communities. Reed canary grass was very infrequent in forested wetlands, and almost never occurred in the Sphagnum peatlands. Disturbance intensity was the most significant environmental factor in explaining Reed canary grass occurrence within wetlands. Statistically significant relationships were identified at distances of 1000 m, 500 m, and 250 m from studied wetlands, between the level of road development and the severity of Reed canary grass invasion along roadsides. Further analysis revealed a significant relationship between roadside Reed canary grass populations and the level of road development (e.g. paved, graded, and ungraded).