940 resultados para Planktonic and sessile bacteria


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analyses of stable isotopes of monospecific planktonic foraminifers (G. quadrilobatus group) and monogeneric benthic foraminifers (Cibicidoides spp.) from late Neogene Atlantic Site 502 and Pacific Site 503 were conducted in order to determine the paleoceanographic changes resulting from the late Neogene uplift of the Panama Isthmus and from climatic cooling. In general, results at each site are similar to those from previous studies for the late Miocene and late Pliocene time interval, documenting the late Miocene (6 Ma) shift in carbon isotopes and the inferred growth of permanent Northern Hemisphere continental ice sheets beginning about 3.2 Ma. Comparison of Atlantic-Pacific planktonic-benthic isotope data for four stratigraphic intervals (~6-8, ~5-6, ~3-5, and ~2-3 Ma) suggests that increasing isolation of Atlantic and Pacific low-latitude waters may be related to the emergence of the Panama Isthmus. The contrast between Atlantic and Pacific benthic foraminiferal d13C increased in two steps from 0.60 per mil to 1 per mil (the modern contrast) at about 6 Ma and 3 Ma. The first increase (0.15 per mil) may represent the end of previously limited deep-water communication between the Atlantic and Pacific at the present location of Panama. The second increase (0.25 per mil) may be due to increased production of North Atlantic Deep Water. This probably reflects the development of modern deep-sea circulation. The d18O of planktonic foraminifers begins to increase in Atlantic Site 502 at 4.2 Ma and may reflect the increasing salinity of the North Atlantic Ocean arising from diminishing surface-water exchange across Panama. This increase is clearly shown by contrasting the d18O of Atlantic and Pacific planktonic foraminifers, as well as the d18O of planktonic and benthic foraminifers at Site 502. This inferred increase in surface-water salinity begins at the time of increasing provinciality of Atlantic and Pacific planktonic foraminifers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthic and planktonic 14C ages are presented for the last glacial termination from marine sediment core VM21-30 from 617 m in the eastern equatorial Pacific. The benthic-planktonic 14C age differences in the core increased to more than 6000 years between Heinrich 1 time and the end of the Younger Dryas period. Several replicated 14C ages on different benthic and planktonic species from the same samples within the deglacial section of the core indicate a minimal amount of bioturbation. Scanning electron microscopy reveals no evidence of calcite alteration or contamination. The oxygen isotope stratigraphy of planktonic and benthic foraminifera does not indicate anomalously old (glacial age) values, and there is no evidence of a large negative stable carbon isotope excursion in benthic foraminifera that would indicate input of old carbon from dissociated methane. It appears, therefore, that the benthic 14C excursion in this core is not an artifact of diagenesis, bioturbation, or a pulse of methane. A benthic D14C stratigraphy reconstructed from the 14C ages from the deglacial section of VM21-30 appears to match that of Baja margin core MV99-MC19/GC31/PC08 (705 m), but the magnitude of the low-14C excursion is much larger in the VM21-30 record. This would seem to imply that the VM21-30 core was closer to the source of 14C-depleted waters during the deglaciation, but the source of this CO2 remains elusive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The observation that Greenland and Antarctic temperatures have followed a specific 'asymmetrical' pattern on millennial time-scales sets rigid constraints on any viable theory of abrupt climate change. The further observation that the very same asymmetry is also reflected in planktonic and benthic d18O measurements from the Northeast Atlantic has extended this constraint to include a specific response in the ocean. Here we present records of deep-water temperature, d18O and d13C variability from the Northeast Atlantic that help to shed light on the links between overturning circulation perturbations, sea-level variability and inter-hemispheric climate change on millennial time-scales. Results indicate that while deep-water temperatures in the Northeast Atlantic have tracked Greenland climate, the d18O signature of local deepwater (d18Odw) has varied in a manner more reminiscent of Antarctic temperature variability. The previously identified correspondence of Antarctic warm events with benthic d18O minima in the Northeast Atlantic is thus found to apply specifically to d18Odw minima, and to extend beyond Marine Isotope Stage 3 to the entirety of the last 50 ka. It is impossible to reconcile completely the Iberian Margin d18Odw record with existing reconstructions of millennial sea-level variability, leading to the conclusion that a significant portion of the d18Odw record must represent local hydrographic change. This is supported by benthic d13C measurements, which suggest the incursion during Greenland stadials of a colder, low-d18O and low-d13C water-mass, of presumed Antarctic origin. These observations confirm a one-to-one coupling of inter-hemispheric climate events with changes in the Atlantic overturning circulation, but fail to rule in or out a unique mechanism by which they were triggered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An expanded and largely complete upper Paleocene to upper Eocene section was recovered from the pelagic cap overlying Allison Guyot, Mid-Pacific Mountains at Ocean Drilling Program (ODP) Site 865 (18°26'N, 179°33'W; paleodepth 1300-1500 m). Reconstructions show that the site was within a few degrees of the equator during the Paleogene. Because no other Paleogene sections have been recovered in the Pacific Ocean at such a low latitude, Site 865 provides a unique record of equatorial Pacific paleoceanography. Detailed stable isotopic investigations were conducted on three planktonic foraminiferal taxa (species of Acarinina, Morozovella, and Subbotina). We studied benthic foraminiferal isotopes at much lower resolution on species of Cibicidoides and Lenticulina, Nuttallides truempyi and Gavelinella beccariiformis, because of their exceptional rarity. The d18O and d13C stratigraphies from Site 865 are generally similar to those derived from other Paleocene and Eocene sections. The planktonic foraminiferal records at Site 865, however, include significantly less short-term, single-sample variability than those from higher-latitude sites, indicating that this tropical, oligotrophic location had a comparatively stable water column structure with a deep mixed layer and less seasonal variability. Low-amplitude (0.1-0.8 per mil) oscillations on timescales of 250,000 to 300,000 years correlate between the d13C records of all planktonic taxa and may represent fluctuations in the mixing intensity of surface waters. Peak sea surface temperatures of 24°-25°C occurred in the earliest Eocene, followed by a rapid cooling of 3-6°C in the late early Eocene. Temperatures remained cool and stable through the middle Eocene. In the late Eocene, surface water temperatures decreased further. Vertical temperature gradients decreased dramatically in the late Paleocene and were relatively constant through much of the Eocene but increased markedly in the late Eocene. Intermediate waters warmed through the late Paleocene, reaching a maximum temperature of 10°C in the early Eocene. Cooling in the middle and late Eocene paralleled that of surface waters, with latest Eocene temperatures below 5°C. Extinction patterns of benthic foraminifera in the latest Paleocene were similar to those observed at other Pacific sites and were coeval with a short-term, very rapid negative excursion in d13C values in planktonic and benthic taxa as at other sites. During this excursion, benthic foraminiferal d18O values decreased markedly, indicating warming of 4 to 6°C for tropical intermediate waters, while planktonic taxa show slight warming (1°C) followed by 2°C of cooling. Convergence of d18O values of planktonic and benthic foraminifera suggests that thermal gradients in the water column in this tropical location collapsed during the excursion. These data are consistent with the hypothesis that equatorial Pacific surface waters were a potential source of warm, higher salinity waters which filled portions of the deep ocean in the latest Paleocene. Oxygen isotopic data indicate that equator to high southern latitude sea surface thermal gradients decreased to as little as 4°C at the peak of the excursion, suggesting some fundamental change in global heat transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen isotope data from planktonic and benthic foraminifera, on a high-resolution age model (44 14C dates spanning 17,400 years), document deglacial environmental change on the southeast Alaska margin (59°33.32'N, 144°9.21'W, 682 m water depth). Surface freshening (i.e., d18O reduction of 0.8 per mil) began at 16,650 ± 170 cal years B.P. during an interval of ice proximal sedimentation, likely due to freshwater input from melting glaciers. A sharp transition to laminated hemipelagic sediments constrains retreat of regional outlet glaciers onto land circa 14,790 ± 380 cal years B.P. Abrupt warming and/or freshening of the surface ocean (i.e., additional d18O reduction of 0.9 per mil) coincides with the Bølling Interstade of northern Europe and Greenland. Cooling and/or higher salinities returned during the Allerød interval, coincident with the Antarctic Cold Reversal, and continue until 11,740 ± 200 cal years B.P., when onset of warming coincides with the end of the Younger Dryas. An abrupt 1 per mil reduction in benthic d18O at 14,250 ± 290 cal years B.P. likely reflects a decrease in bottom water salinity driven by deep mixing of glacial meltwater, a regional megaflood event, or brine formation associated with sea ice. Two laminated opal-rich intervals record discrete episodes of high productivity during the last deglaciation. These events, precisely dated here at 14,790 ± 380 to 12,990 ± 190 cal years B.P. and 11,160 ± 130 to 10,750 ± 220 cal years B.P., likely correlate to similar features observed elsewhere on the margins of the North Pacific and are coeval with episodes of rapid sea level rise. Remobilization of iron from newly inundated continental shelves may have helped to fuel these episodes of elevated primary productivity and sedimentary anoxia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the stable isotopic analysis of planktonic and benthic foraminifers from Ocean Drilling Program Core 1148 of the northern South China Sea (SCS), Pliocene-Pleistocene isotope stratigraphy and events have been reconstructed. The benthic foraminiferal delta18O record shows that the Pacific intermediate water had a greater influence upon the SCS or the Pacific deep water above ~2600 m was warmer before ~3.2Ma than at present. After that, the benthic delta18O conspicuously increased during the ~3.2-2.5 Ma period, in correspondence to the formation of the Northern Hemisphere ice sheet, whereas the planktonic delta18O signal suggests a stepwise overall decrease of sea surface temperature during the ~2.2-0.9 Ma period. Compared to the equatorial Pacific records, the decrease in planktonic (Globigerinoides ruber) delta13C during the ~3.2-2.2 Ma period is particularly striking, suggesting that fertility of surface water increased noticeably. According to the modern delta13C distribution of G. ruber in the northern SCS, it is inferred that the East Asian winter monsoon strengthened during this interval. Afterwards, there were several conspicuous decreases of G. ruber delta13C at ~1.7, 1.3, 0.9, 0.45 and 0.15 Ma BP, that is, about every 0.4 Ma, suggesting that the East Asian winter monsoon became episodically stronger. This is confirmed by changes in relative abundance of planktonic foraminifer species Neogloboquadrina dutertrei, a typical East Asian winter monsoon proxy. The deepwater delta13C of the SCS is close to that of the Pacific, but lighter than that of the Atlantic, implying that the pattern of deep water originating mainly from the Atlantic and through the Pacific entering the SCS existed at least since the early Pliocene. After 1.4 Ma, the benthic delta13C signal decreased conspicuously but with a periodicity of ~100 ka, suggesting that the deep-water ventilation of the SCS was reduced, probably corresponding to a decrease of the North Atlantic Deep Water and/or further isolation of the SCS deep basin from the Pacific during glaciations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distribution of diatoms, radiolarians, planktonic and benthic foraminifers, and sediment components in fraction >0.125 mm was analyzed in a core obtained from the central Sea of Okhotsk within frameworks of the Russian-German KOMEX Project. The core section characterizes the period 190-350 ka, which corresponds to marine-isotopic stages (MIS) 7 to 10. During glacial MIS 10 and MIS 8, the basin accumulated terrigenous material lacking microfossils or containing them in low abundance, which reflects, along with their composition, heavy sea-ice conditions, suppressed bioproductivity, and bottom environment aggressive toward calcium carbonate. Interglacial MIS 9 was characterized by elevated bioproductivity with accumulation of diatomaceous ooze during the climatic optimum (328 to 320 ka). Water exchange with the Pacific was maximal from 328 to 324 ka ago. Environment became moderate and close to the present-day one at the end of the optimum exhibiting possible existence of a dichothermal layer with substantial amounts of surface Pacific water still flowing into the basin. Similar to interglacial MIS 5e and MIS 1, ''old'' Pacific water determined near-bottom environment in the central Sea of Okhotsk during that period, although influx of terrigenous material was higher, probably reflecting more humid climate of the region. Slight warming marked the terminal MIS 8 (approximately 260 ka ago). Paleoceanographic situation during the interglacial MIS 7 was highly variable: from warm-water to almost glacial. The main climatic optimum of MIS 7 occurred within 220-210 ka, when subsurface stratification increased and the dichothermal layer developed. Bottom environment during the studied time interval, except for the optimum of interglacial MIS 9, resembled those characteristic of glacial periods: actively formed ''young'' Okhotsk water displaced ''old'' Pacific deep water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oceanographic changes in the western equatorial Pacific during the past 6 m.y. are inferred from carbon isotopic analyses of planktonic and benthic foraminifers from Ontong Java Plateau (DSDP Site 586). Sample spacing is 1.5 m (ca. 35,000-75,000 yr). An overall trend of d13C toward lighter values is evident for the last 5 m.y. in all four foraminiferal taxa analyzed (G. sacculifer, Pulleniatina, P. wuellerstorfi, and O. umbonatus). This trend is interpreted as an enrichment of the global ocean with 12C, because of the addition of carbon from organic carbon reservoirs (or lack of removal of carbon to such reservoirs), as a consequence of an overall drop in sea level. Differences between shallow- and deep-water d13C decrease slightly during this time interval, suggesting a moderate drop in productivity. This drop is not sufficient to explain the drop in sedimentation rate, however, much of which apparently must be ascribed to winnowing effects. A marked convergence in the d13C values of planktonic taxa exists within the last 2 m.y. We propose that this convergence indicates nutrient depletion in thermocline waters, caused by the vigorous removal of phosphate in marginal upwelling regions, or by the stripping of intermediate waters in their source regions. No large shifts are seen in the carbon isotope record of the last 6 m.y., in contrast to the oxygen isotope record. Some indication of cyclicity is present, with a period between 0.5 and 1.0 m.y. (especially in the earlier portion of the record).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orbital tuning of benthic d18O is a common approach for assigning ages to ocean sediment records. Similar environmental forcing of the northern South China Sea and the southeast Asian cave regions allows for transfer of the speleothem d18O radiometric chronology to the planktonic and benthic d18O records from Ocean Drilling Program Site 1146, yielding a new chronology with 41 radiometrically calibrated datums, spanning the past 350 kyr. This approach also provides for an independent assessment of the accuracy of the orbitally tuned benthic d18O chronology for the last 350 kyr. The largest differences relative to the latest chronology occur in marine isotope stages (MIS) 5.4, 5.5, 6, 7, and 9.3. Prominent suborbital-scale structure believed to be global in nature is identified within MIS 5.4 and MIS 7.2. On the basis of the radiometrically calibrated chronology, the time constant of the ice sheet is found to be 5.4 kyr at the precession band (light d18O lags precession minima by -55.4°) and 10.4 kyr at the obliquity band (light d18O lags obliquity maxima by 57.4°). These values are significantly shorter than the single 17 kyr time constant originally estimated by Imbrie et al. (1984), based primarily on the timing of terminations I and II and the 15 kyr time constant used by Lisiecki and Raymo (2005, doi:10.1029/2004PA001071).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluorescence in situ hybridization (FISH) was performed to analyze the nitrifying microbial communities in an activated sludge reactor (ASR) and a fixed biofilm reactor (FBR) for piggery wastewater treatment. Heterotrophic oxidation and nitrification were occurring simultaneously in the ASR and the COD and nitrification efficiencies depend on the loads. In the FBR nitrification efficiency also depends on ammonium load to the reactor and nitrite was accumulated when free ammonia concentration was higher than 0.2 mg NH3-N/L. FISH analysis showed that ammonia-oxidizing bacteria (NSO1225) and denitrifying bacteria (RRP1088) were less abundant than other bacteria (EUB338) in ASR. Further analysis on nitrifying bacteria in the FBR showed that Nitrosomonas species (NSM156) and Nitrospira species (NSR1156) were the dominant ammonia-oxidizing and nitrite-oxidizing bacteria, respectively, in the piggery wastewater nitrification system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyketides derived from dinoflagellates are among the most complex and unique structures identified to date. The carbon framework of all polyketides is assembled by a polyketide synthase (PKS). No studies of the biosynthesis of dinoflagellate derived polyketides at the genomic level have been reported to date. Nine strains representing seven different species of dinoflagellates were screened for the presence of type I and type II polyketide synthases (PKS) by PCR and RT-PCR. Seven of the nine strains yielded products that were homologous with known and putative type I polyketide synthases. In each case, the presence of a PKS gene was correlated with the presence of bacteria in the cultures as identified by amplification of the bacterial 16S rRNA gene. However, residual phylogenetic signals, resistance to methylation sensitive restriction enzymes and the lack of hybridization to bacterial isolates support a dinoflagellate origin for most of these genes. ^ A more detailed analysis of Karenia brevis, a toxic marine dinoflagellate endemic to the Gulf of Mexico, also supports the hypothesis that dinoflagellates have polyketide synthase genes. Blooms of this harmful alga cause fish kills, marine mammal mortalities and neurotoxic shellfish poisonings. These harmful effects are attributed to a suite of polyketide secondary metabolites known as the brevetoxins. PKS encoding genes amplified from K. brevis culture were found to be similar to PKS genes from the closely related protist, Cryptosporidium parvum. This suggested that these genes originate from the dinoflagellate. However, K. brevis has not been grown axenically. The associated bacteria might be the source of the toxins or the PKS genes. This dissertation reports the localization of these PKS encoding genes by a combination of flow cytometry/PCR and fluorescence in situ hybridization (FISH). Two genes localized exclusively to K. brevis cells while a third localized to both K. brevis and associated bacteria. While these genes have not yet been linked to toxin production, the work describes the first definitive evidence of resident PKS genes in any dinoflagellate. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the high-resolution temporal dynamics of recovery of dried periphyton crusts following rapid rehydration in a phosphorus (P)-limited short hydroperiod Everglades wetland. Crusts were incubated in a greenhouse in tubs containing water with no P or exogenous algae to mimic the onset of the wet season in the natural marsh when heavy downpours containing very low P flood the dry wetland. Algal and bacterial productivity were tracked for 20 days and related to compositional changes and P dynamics in the water. A portion of original crusts was also used to determine how much TP could be released if no biotic recovery occurred. Composition was volumetrically dominated by cyanobacteria (90%) containing morphotypes typical of xeric environments. Algal and bacterial production recovered immediately upon rehydration but there was a net TP loss from the crusts to the water in the first 2 days. By day 5, however, cyanobacteria and other bacteria had re-absorbed 90% of the released P. Then, water TP concentration reached a steady-state level of 6.6 μg TP/L despite water TP concentration through evaporation. Phosphomonoesterase (PMEase) activity was very high during the first day after rehydration due to the release of a large pre-existing pool of extracellular PMEase. Thereafter, the activity dropped by 90% and increased gradually from this low level. The fast recovery of desiccated crusts upon rehydration required no exogenous P or allogenous algae/bacteria additions and periphyton largely controlled P concentration in the water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Helicobacter pylori is a spiral, Gram negative, mobile, and microaerophilic bacteria recognized as a major cause of gastritis, ulcer, gastric cancer, and gastric low grade, B cell, mucosa – associated lymphoid tissue (MALT) lymphoma, constituting an important microorganism in medical microbiology. Its importance comes from the difficulty of treatment because the requirement of multiple drugs use, besides the increasing emergence of resistant and multiresistant strains to antibiotics used in th e clinic. In order to expand safe and effective therapeutic options , chemical studies on medicinal plants by obtaining extracts, fractions, isolated compounds or essential oils with some biological activity has been intensified . Given the above, the objective was to evaluate the inhi bitory activity of organic extracts derived from Syzygium cumini and Encholirium spectabile, with antiulcer history, and the essential oil, obtained from S. cumini, against H. pylori (ATCC 43504) by the disk diffusion method, for qualitative evaluation, an d determination of minimum inhibitory concentration (MIC) using the broth microdilution method, for quantitative analysis. Also was evaluated the extracts in vitro toxicity by a hemolytic assay using sheep red blood cells, and VERO and HeLa cells using the MTT assay to analyze cell viability. The extracts of both plant used in antimicrobial assays did not inhibit bacterial growth, however the essential oil of S. cumini (SCFO) proved effective, showing MIC value of 205 μg/mL (0.024 % dilution of the original oil). In the hemolytic assay, the same oil shows moderate toxicity, by promote 25% hemolysis at 1000 μg/mL. Regarding the cytotoxicity in cell culture, the SCFO, at 260 μg/mL, affected the cell viability around 80% of HeLa and 50% of VERO cells. So the oi l obtained from S. cumini leaves has antimicrobial activity against H. pylori and cytotoxicity potential, suggesting a source of new molecule drug candidates, since new stages of toxicity in vitro and in vivo, as well, chemical characterization be evaluate d. Moreover, the development of a prospective drug delivery system can result in a prototype to be used in preclinical tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inefficiency of chemical pesticides to control phytopathogenic fungi in agriculture and the frequent incidence of human diseases caused by bacteria which are resistant to antibiotics lead to the search for alternative antimicrobial compounds. In this context, plant defensins are a promising tool for the control of both plant and human pathogenic agents. Plant defensins are cationic peptides of about 50 amino acid residues, rich in cysteine and whose tridimensional structure is considerably conserved among different plant species. These antimicrobial molecules represent an important innate component from plant defense response against pathogens and are expressed in various plant tissues, such as leaves, tubers, flowers, pods and seeds. The present work aimed at the evaluation of the antimicrobial activity of two plant defensins against different phytopathogenic fungi and pathogenic bacteria to humans. The defensin Drr230a, whose gene was isolated from pea (Pisum sativum), and the defensin CD1,whose gene was identified within coffee (Coffea arabica) transcriptome, were subcloned in yeast expression vector and expressed in Pichia pastoris. The gene cd1 was subcloned as two different recombinant forms: CD1tC, containing a six-histidine sequence (6xHis) at the peptide C-terminal region and CD1tN, containing 6xHis coding sequence at the N-terminal region. In the case of the defensin Drr230a, the 6xHis coding sequence was inserted only at the N-terminal region. Assays of the antimicrobial activity of the purified recombinant proteins rDrr230a and rCD1 against Phakopsora pachyrhizi, causal agent of soybean Asian rust, were performed to analyze the in vitro spore germination inhibition and disease severity caused by the fungus in planta. Both recombinant defensins were able to inhibit P. pachyrhizi uredospore germination, with no difference between the antimicrobial action of either CD1tC or CD1tN. Moreover, rDrr230a and rCD1 drastically reduced severity of soybean Asian rust, as demonstrated by in planta assays. In spite of the fact that rCD1 was not able to inhibit proliferation of the human pathogenic bacteria Staplylococcus aureus and Klebsiella pneumoniae, rCD1 was able to inhibit growth of the phytopathogenic fungus Fusarium tucumaniae, that causes soybean sudden death syndrome. The obtained results show that these plant defensins are useful candidates to be used in plant genetic engineering programs to control agriculture impacting fungal diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Sea of Okhotsk is a marginal sea of the Pacific Ocean, which is characterized by strong variations in the productivity and sediment supply due to sea ice transport and river input. Furthermore the variations in the hydrological cycle determine the formation of the SOIW (Sea of Okhotsk Intermediate Water) which plays an important role in the ventilation processes in the intermediate water of the N-Pacific. Isotope data measured on planktonic and benthic foraminifera, sedimentological and geochemical studies of sediment cores and surface samples from the Sea of Okhotsk are used to reconstruct the paleoceanography during the past 350.000 years. The dating and correlation of the sediments are based on oxygen isotope stratigraphy, absolute ages, magnetic susceptibility as well as a detailled tephrachronology of the entire basin. The sedimentation rates are characterized by temporal and spatial variations. The maximum sedimentation rate takes place at the continental slope off Sakhalin due to the input of the Amur River, the sea ice drift and the high productivity. The sedimentation rate in the eastern part of the Sea of Okhotsk is generelly high because of the influence of the nutrient-rich Kamchatka Current. In the central and northern parts of the Sea of Okhotsk, areas with low productivity and reduced terrestrial supply, the sedimentation rate is the lowest. The analyses of the surface sediment samples make it possible to characterize the (sub)- recent sediment supply and transportation processes. The bulk sediment measurements, isotope data and the accumulation rate of ice-rafted debris (IRD) show a dominant sea ice cover and a region with a high productivity as well as a high Amur River input in the western part of the sea. The eastern part of the Sea of Okhotsk, however, is marked by the predominance of warm and nutrient-rich water masses coming from the Kamchatka Current which restricts the sea ice cover. This is reflected in low content of ice-rafted debris and high productivity proxies as well as in isotope data. The deposits of the Sea of Okhotsk are characterized by terrestrial, biogenic and volcanogenic sediment input which varies temporally and spatially. Here, the sedimentation pattern is dominated by the terrestrial input. Bulk sediment measurements and sample analyses of the > 63 micron particle input make it possible to distinguish glacial and interglacial fluctuations. The sedimentation processes during glacial times are determined by a high content of ice-rafted debris, whereas the primary production is higher during interglacial periods. During the last glacial/interglacial cycle the IRD-distribution pattern indicates a strong sea ice transport in the western part and in large areas of the open sea in the eastern part of the Sea of Okhotsk with a relatively constant ice-drift system. The IRD flux in sediments of the oxygen isotope Stage 6 reflects a new sedimentation pattern in the eastern part of the sea. This high IRD accumulation rate indicates ice advances beyond the shelf margin and an iceberg transport from NE-E direction into the Sea of Okhotsk. The several large, brief, negative anomalies in d13C values of Neogloboquadrina pachyderma (s) show releases of methane from basin sediments which correspond to periods of relative sea level falls. The high sedimentation rates on the Sakhalin slope allow insights into the climatic history in Holocene and indicate shorter-scale variations oscillation in Stage 3, which correlate with the global climatic changes. These variations are described as Dansgaard-Oeschger cycles in Greenland ice cores and as Heinrich-Events in several marine sediment cores from the N-Atlantic.