919 resultados para Pilot-scale
Resumo:
The wind loading on most structural elements is made up of both an external and internal pressure. Internal pressures are also important for the design of naturally ventilated buildings. The internal pressure is the interaction between the external pressure propagating through the building envelope and any internal plant causing building pressurization. Although the external pressure field can be well defined through a series of wind tunnel tests, modeling complexities makes accurate prediction of the internal pressure difficult. For commercial testing for the determination of design cladding pressures, an internal pressure coefficient is generally assumed from wind loading standards. Several theories regarding the propagation of internal pressures through single and multiple dominant openings have been proposed for small and large flexible buildings (Harris (1990), Holmes, (1979), Liu & Saathoff (1981 ), Vickery (1986, 1994), Vickery & Bloxham (1992), Vickery & Georgiou (1991))...
Resumo:
The literature around Library 2.0 remains largely theoretical with few empirically studies and is particularly limited in developing countries such as Indonesia. This study addresses this gap and aims to provide information about the current state of knowledge on Indonesian LIS professionals’ understanding of Library 2.0. The researchers used qualitative and quantitative approaches for this study, asking thirteen closed- and open-ended questions in an online survey. The researchers used descriptive and in vivo coding to analyze the responses. Through their analysis, they identified three themes: technology, interactivity, and awareness of Library 2.0. Respondents demonstrated awareness of Library 2.0 and a basic understanding of the roles of interactivity and technology in libraries. However, overreliance on technology used in libraries to conceptualize Library 2.0 without an emphasis on its core characteristics and principles could lead to the misalignment of limited resources. The study results will potentially strengthen the research base for Library 2.0 practice, as well as inform LIS curriculum in Indonesia so as to develop practitioners who are able to adapt to users’ changing needs and expectations. It is expected that the preliminary data of this study could be used to design a much larger and more complex future research project in this area.
Resumo:
A novel approach to large-scale production of high-quality graphene flakes in magnetically-enhanced arc discharges between carbon electrodes is reported. A non-uniform magnetic field is used to control the growth and deposition zones, where the Y-Ni catalyst experiences a transition to the ferromagnetic state, which in turn leads to the graphene deposition in a collection area. The quality of the produced material is characterized by the SEM, TEM, AFM, and Raman techniques. The proposed growth mechanism is supported by the nucleation and growth model.
Resumo:
Recently, a variety high-aspect-ratio nanostructures have been grown and profiled for various applications ranging from field emission transistors to gene/drug delivery devices. However, fabricating and processing arrays of these structures and determining how changing certain physical parameters affects the final outcome is quite challenging. We have developed several modules that can be used to simulate the processes of various physical vapour deposition systems from precursor interaction in the gas phase to gas-surface interactions and surface processes. In this paper, multi-scale hybrid numerical simulations are used to study how low-temperature non-equilibrium plasmas can be employed in the processing of high-aspect-ratio structures such that the resulting nanostructures have properties suitable for their eventual device application. We show that whilst using plasma techniques is beneficial in many nanofabrication processes, it is especially useful in making dense arrays of high-aspect-ratio nanostructures.
Resumo:
The means of reducing nanoparticle contamination in the synthesis of carbon nanostructures in reactive Ar + H2 + CH4 plasmas are studied. It is shown that by combining the electrostatic filtering and thermophoretic manipulation of nanoparticles, one can significantly improve the quality of carbon nanopatterns. By increasing the substrate heating power, one can increase the size of deposited nanoparticles and eventually achieve nanoparticle-free nanoassemblies. This approach is generic and is applicable to other reactive plasma-aided nanofabrication processes.
Resumo:
The proliferation of news reports published in online websites and news information sharing among social media users necessitates effective techniques for analysing the image, text and video data related to news topics. This paper presents the first study to classify affective facial images on emerging news topics. The proposed system dynamically monitors and selects the current hot (of great interest) news topics with strong affective interestingness using textual keywords in news articles and social media discussions. Images from the selected hot topics are extracted and classified into three categorized emotions, positive, neutral and negative, based on facial expressions of subjects in the images. Performance evaluations on two facial image datasets collected from real-world resources demonstrate the applicability and effectiveness of the proposed system in affective classification of facial images in news reports. Facial expression shows high consistency with the affective textual content in news reports for positive emotion, while only low correlation has been observed for neutral and negative. The system can be directly used for applications, such as assisting editors in choosing photos with a proper affective semantic for a certain topic during news report preparation.
Resumo:
Results of experimental investigations on the relationship between nanoscale morphology of carbon doped hydrogenated silicon-oxide (SiOCH) low-k films and their electron spectrum of defect states are presented. The SiOCH films have been deposited using trimethylsilane (3MS) - oxygen mixture in a 13.56 MHz plasma enhanced chemical vapor deposition (PECVD) system at variable RF power densities (from 1.3 to 2.6 W/cm2) and gas pressures of 3, 4, and 5 Torr. The atomic structure of the SiOCH films is a mixture of amorphous-nanocrystalline SiO2-like and SiC-like phases. Results of the FTIR spectroscopy and atomic force microscopy suggest that the volume fraction of the SiC-like phase increases from ∼0.2 to 0.4 with RF power. The average size of the nanoscale surface morphology elements of the SiO2-like matrix can be controlled by the RF power density and source gas flow rates. Electron density of the defect states N(E) of the SiOCH films has been investigated with the DLTS technique in the energy range up to 0.6 eV from the bottom of the conduction band. Distinct N(E) peaks at 0.25 - 0.35 eV and 0.42 - 0.52 eV below the conduction band bottom have been observed. The first N(E) peak is identified as originated from E1-like centers in the SiC-like phase. The volume density of the defects can vary from 1011 - 1017 cm-3 depending on specific conditions of the PECVD process.
Resumo:
A plasma-assisted concurrent Rf sputtering technique for fabrication of biocompatible, functionally graded CaP-based interlayer on Ti-6Al-4V orthopedic alloy is reported. Each layer in the coating is designed to meet a specific functionality. The adherent to the metal layer features elevated content of Ti and supports excellent ceramic-metal interfacial stability. The middle layer features nanocrystalline structure and mimics natural bone apatites. The technique allows one to reproduce Ca/P ratios intrinsic to major natural calcium phosphates. Surface morphology of the outer, a few to few tens of nanometers thick, layer, has been tailored to fit the requirements for the bio-molecule/protein attachment factors. Various material and surface characterization techniques confirm that the optimal surface morphology of the outer layer is achieved for the process conditions yielding nanocrystalline structure of the middle layer. Preliminary cell culturing tests confirm the link between the tailored nano-scale surface morphology, parameters of the middle nanostructured layer, and overall biocompatibility of the coating.
Resumo:
Objective To assess the usability and validity of the Primary Care Practice Improvement Tool (PC-PIT), a practice performance improvement tool based on 13 key elements identified by a systematic review. It was co-created with a range of partners and designed specifically for primary health care. Design This pilot study examined the PC-PIT using a formative assessment framework and mixed-methods research design. Setting and participants Six high-functioning general practices in Queensland, Australia, between February and July 2013. A total of 28 staff participated — 10 general practitioners, six practice or community nurses, 12 administrators (four practice managers; one business manager and eight reception or general administrative staff). Main outcome measures Readability, content validity and staff perceptions of the PC-PIT. Results The PC-PIT offers an appropriate and acceptable approach to internal quality improvement in general practice. Quantitative assessment scores and qualitative data from all staff identified two areas in which the PC-PIT required modification: a reduction in the indicative reading age, and simplification of governance-related terms and concepts. Conclusion The PC-PIT provides an innovative approach to address the complexity of organisational improvement in general practice and primary health care. This initial validation will be used to develop a suite of supporting, high-quality and free-to-access resources to enhance the use of the PC-PIT in general practice. Based on these findings, a national trial is now underway.
Resumo:
Next Generation Sequencing (NGS) has revolutionised molecular biology, resulting in an explosion of data sets and an increasing role in clinical practice. Such applications necessarily require rapid identification of the organism as a prelude to annotation and further analysis. NGS data consist of a substantial number of short sequence reads, given context through downstream assembly and annotation, a process requiring reads consistent with the assumed species or species group. Highly accurate results have been obtained for restricted sets using SVM classifiers, but such methods are difficult to parallelise and success depends on careful attention to feature selection. This work examines the problem at very large scale, using a mix of synthetic and real data with a view to determining the overall structure of the problem and the effectiveness of parallel ensembles of simpler classifiers (principally random forests) in addressing the challenges of large scale genomics.
Resumo:
AIMS The aims of the study are to characterize changes in JK-1 (FAM134B) at the DNA level in colorectal adenocarcinoma and adenoma and exploring the possible correlations with clinical and pathological features. METHOD JK-1 gene DNA copy number changes were studied in 211 colorectal carcinomas, 32 colorectal adenoma and 20 colorectal non-cancer colorectal tissue samples by real-time quantitative polymerase chain reaction. The results were correlated with clinical and pathological parameters. RESULTS Colorectal adenomas were more likely to be amplified than deleted with regard to JK-1 (FAM134B) DNA copy number change. The copy number level of JK-1 (FAM134B) DNA in colorectal adenocarcinomas was significantly lower in comparison to colorectal adenomas. Changes in JK-1 (FAM134B) DNA copy number were associated with histological subtypes, and cancer stage. Lower copy numbers were associated with higher tumor stage, lymph node stage and overall pathological stage of cancer. Conversely, higher DNA copy numbers were detected more often in the mucinous adenocarcinoma. CONCLUSIONS This is the first study showing significant correlations of the JK-1 (FAM134B) gene copy number alterations with clinical and pathological features in a large cohort of pre-invasive and invasive colorectal malignancies. The changes in DNA copy number associated with progression of colorectal malignancies reflect that JK-1 (FAM134B) gene could play a role in controlling some steps in development of the invasive phenotypes.
Resumo:
Background Current evidence to support non-medical prescribing is predominantly qualitative, with little evaluation of appropriateness. This study aims to evaluate the appropriateness of prescribing, and significance of omissions, from a doctor pharmacist collaborative prescribing model in an elective surgery pre admission clinic (PAC). Method A modified version of the Medication Appropriate Index (MAI) was developed, piloted and subsequently used by an expert panel, comprised of a surgeon, anaesthetist, clinical pharmacologist, pharmacist, resident medical officer (RMO) and clinical nurse. The tool was used to rate the appropriateness of prescribing of medications, and the significance of omissions in a 5% sample (N=19) of the total cohort from a randomised, controlled two arm trial of doctor-pharmacist collaborative prescribing. Results When reviewer assessments were combined, 32 out of 294 (10.9%) medications assessed for appropriateness in the control arm were classed as inappropriate, compared to 13 of 266 (4.9%) in the intervention arm. Out of 89 regular medications in the control arm, 25 (28%) were omitted from the medication charts, compared to 1 out of 55 (2%) in the intervention arm (p<0.001, fishers exact) On average, 52% of omissions in the control arm were judged to have potential for patient harm or ward inconvenience. Conclusion For the appropriateness of prescribing, overall results were similar between arms, as judged by individual panel members. Medication charts in the control arm contained significantly more omissions than in the intervention arm, a number of which were rated by the panel members as having the potential for patient harm or ward inconvenience.
Resumo:
A single plant cell was modeled with smoothed particle hydrodynamics (SPH) and a discrete element method (DEM) to study the basic micromechanics that govern the cellular structural deformations during drying. This two-dimensional particle-based model consists of two components: a cell fluid model and a cell wall model. The cell fluid was approximated to a highly viscous Newtonian fluid and modeled with SPH. The cell wall was treated as a stiff semi-permeable solid membrane with visco-elastic properties and modeled as a neo-Hookean solid material using a DEM. Compared to existing meshfree particle-based plant cell models, we have specifically introduced cell wall–fluid attraction forces and cell wall bending stiffness effects to address the critical shrinkage characteristics of the plant cells during drying. Also, a moisture domain-based novel approach was used to simulate drying mechanisms within the particle scheme. The model performance was found to be mainly influenced by the particle resolution, initial gap between the outermost fluid particles and wall particles and number of particles in the SPH influence domain. A higher order smoothing kernel was used with adaptive smoothing length to improve the stability and accuracy of the model. Cell deformations at different states of cell dryness were qualitatively and quantitatively compared with microscopic experimental findings on apple cells and a fairly good agreement was observed with some exceptions. The wall–fluid attraction forces and cell wall bending stiffness were found to be significantly improving the model predictions. A detailed sensitivity analysis was also done to further investigate the influence of wall–fluid attraction forces, cell wall bending stiffness, cell wall stiffness and the particle resolution. This novel meshfree based modeling approach is highly applicable for cellular level deformation studies of plant food materials during drying, which characterize large deformations.
Resumo:
Background Parental fever phobia and overuse of antipyretics to control fever is increasing. Little is known about childhood fever management among Arab parents. No scales to measure parents’ fever management practices in Palestine are available. Aims The aims of this study were to translate and examine the psychometric properties of the Arabic version of the Parent Fever Management Scale (PFMS). Methods A standard “forward–backward” procedure was used to translate PFMS into Arabic language. It was then validated on a convenience sample of 402 parents between July and October 2012. Descriptive statistics were used, and instrument reliability was assessed for internal consistency using Cronbach's alpha coefficient. Validity was confirmed using convergent and known group validation. Results Applying the recommended scoring method, the median (interquartile range) score of the PFMS was 26 (23-30). Acceptable internal consistency was found (Cronbach’s alpha = 0.733) and the test–retest reliability value was 0.92 (P < 0.001). The chi-squared (χ2) test showed a significant relationship between PFMS groups and frequent daily administration of antipyretic groups (χ2 = 52.86; P < 0.001). The PFMS sensitivity and specificity were 77.67% and 57.75%, respectively. The positive and negative predictive values were 67.89% and 32.11%, respectively. Conclusions The findings of this validation study indicate that the Arabic version of the PFMS is a reliable and valid measure which can be used as a useful tool for health professionals to identify parents’ fever management practices and thus provide targeted education to reduce the unnecessary burden of care they place on themselves when concerned for a febrile child.
Resumo:
Despite the acknowledged importance of assessment in education, there has been minimal research into the preparation of preservice teachers for the important role of involving preservice teachers in marking, grading, moderating and providing feedback on student work. This article reports on a pilot project in which preservice teachers participated in an ongoing peer assessment and social moderation process in a dedicated course on assessment. The purpose of the project was to investigate specific ways in which key assessment processes can be effectively taught to preservice teachers. The research involved 96 preservice teachers who completed a Likert scale survey and free text responses to set questions. The results indicated that while preservice teachers valued the process, continual opportunities to learn the nature and purpose of essential assessment practices related to marking, grading, moderating and providing feedback are necessary to graduate competent and work-ready assessors.