987 resultados para Piezoelectric actuators


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper develops a path-following steering control strategy for an articulated heavy goods vehicle. The controller steers the axles of the semi-trailer so that its rear end follows the path of the fifth wheel coupling: for all paths and all speeds. This substantially improves low-speed manoeuvrability, off-tracking, and tyre scrubbing (wear). It also increases high-speed stability, reduces 'rearward amplification', and reduces the propensity to roll over in high-speed transient manoeuvres. The design of a novel experimental heavy goods vehicle with three independent hydraulically actuated steering axles is presented. The path-following controller is tested on the experimental vehicle, at low and high speeds. The field test results are compared with vehicle simulations and found to agree well. The benefits of this steering control approach are quantified. In a low-speed 'roundabout' manoeuvre, low-speed off-tracking was reduced by 73 per cent, from 4.25 m for a conventional vehicle to 1.15 m for the experimental vehicle; swept-path width was reduced by 2 m (28 per cent); peak scrubbing tyre forces were reduced by 83 per cent; and entry tail-swing was eliminated. In an 80 km/h lane-change manoeuvre, peak path error for the experimental vehicle was 33 per cent less than for the conventional vehicle, and rearward amplification of the trailer was 35 per cent less. Increasing the bandwidth of the steering actuators improved the high-speed dynamic performance of the vehicle, but at the expense of increased oil flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zinc oxide (ZnO) thin films were deposited at high rates ( > 50 nm min-1) using a unique technique known as high target utilisation sputtering (HiTUS). The films obtained possess good crystallographic orientation, low surface roughness, very low stress and excellent piezoelectric properties. We have utilised the films to develop highly sensitive biosensors based on thickness longitudinal mode (TLM) thin film bulk acoustic resonators (FBARs). The FBARs have the fundamental TLM at a frequency near 1.5 GHz and quality factor Q higher than 1,000, which is one of the largest values ever reported for ZnO-based FBARs. Bovine Serum Albumin (BSA) solutions with different concentrations were placed on the top of different sets of identical FBARs and their responses to mass-loading from physically adsorbed protein coatings were investigated. These resonators demonstrated a high sensitivity and thus have a great potential as gravimetric sensors for biomedical applications. © 2011 Inderscience Enterprises Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The seismic behaviour of anchored sheet pile walls is a complex soil-structure interaction problem. Damaged sheet pile walls are very expensive to repair and their seismic behaviour needs to be investigated in order to understand their possible mechanisms of failure. The research described in this paper involves both centrifuge testing and Finite Element (FE) analyses aimed at investigating the seismic behaviour of an anchored sheet pile wall in dry sand. The model wall is tied to the backfill with two tie rods connected to an anchor beam. The accelerations of the sheet pile wall, the anchor beam and the soil around the wall were measured using miniature piezoelectric accelerometers. The displacement at the tip of the wall was also measured. Stain gauges at five different locations on the wall were used to measure the bending moments induced in the the wall. The anchor forces in the tie rods were also measured using load cells. The results from the centrifuge tests were compared with 2-D, plane strain FE analyses conducted using DIANA-SWANDYNE II and the observed seismic behaviour was explained in the light of these findings. © 2011 Taylor & Francis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High speed photographic images of jets formed from dilute solutions of polystyrene in diethyl phthalate ejected from a piezoelectric drop-on-demand inkjet head have been analyzed in order to study the formation and distribution of drops as the ligament collapses. Particular attention has been paid to satellite drops, and their relative separation and sizes. The effect of polymer concentration was investigated. The distribution of nearest-neighbour centre spacing between the drops formed from the ligament is better described by a 2-parameter modified gamma distribution than by a Gaussian distribution. There are (at least) two different populations of satellite size relative to the main drop size formed at normal jetting velocities, with ratios of about three between the diameters of the main drop and the successive satellite sizes. The distribution of the differences in drop size between neighbouring drops is close to Gaussian, with a small non-zero mean for low polymer concentrations, which is associated with the conical shape of the ligament prior to its collapse and the formation of satellites. Higher polymer concentrations result in slower jets for the same driving impulse, and also a tendency to form ligaments with a near-constant width. Under these conditions the mean of the distribution of differences in nearest-neighbour drop size was zero.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fabrication of high frequency acoustic wave devices requires thedevelopment of thin films of piezoelectric materials with improved morphologicaland electro-acoustical properties. In particular, the crystalline orientationof the films, surface morphology, film stress and electrical resistivity are keyissues for the piezoelectric response. In the work reported here, ZnO thinfilms were deposited at high rates (>50 nm/min) using a novel process knownas the High Target Utilisation Sputtering (HiTUS). The films deposited possessexcellent crystallographic orientation, high resistivity (>109ωm), and exhibit surface roughness and film stress one order of magnitudelower than films grown with standard magnetron sputtering. The electromechanicalcoupling coefficient of the films, kT, was precisely calculated byimplementing the resonant spectrum method, and was found to be at least 6%higher than any previously reported kT of magnetron sputtered filmsto the Authors' knowledge. The low film stress of the film is deemed as one ofthe most important factors responsible for the high k T valueobtained. © 2010 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solidly mounted resonators (SMRs) with a top carbon nanotubes (CNTs) surface coating that doubles as an electrode and as a sensing layer have been fabricated. The influence of the CNTs on the frequency response of the resonators was studied by direct comparison to identical devices with a top metallic electrode. It was found that the CNTs introduced significantly less mass load on the resonators and these devices exhibited a greater quality factor, Q (>2000, compared to ∼1000 for devices with metal electrodes), which increases the gravimetric sensitivity of the devices by allowing the tracking of smaller frequency shifts. Protein solutions with different concentrations were loaded on the top of the resonators and their responses to mass-load from physically adsorbed coatings were investigated. Results show that resonators using CNTs as the top electrode exhibited a higher frequency change for a given load (∼0.25 MHz cm2 ng-1) compared to that of a metal thin film electrode (∼0.14 MHz cm2 ng-1), due to the lower mass of the CNT electrodes and their higher active surface area compared to that of a thin film metal electrode. It is therefore concluded that the use of CNT electrodes on resonators for their use as gravimetric biosensors is a significant improvement over metallic electrodes that are normally employed. © 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present experimental results describing enhanced readout of the vibratory response of a doubly clamped zinc oxide (ZnO) nanowire employing a purely electrical actuation and detection scheme. The measured response suggests that the piezoelectric and semiconducting properties of ZnO effectively enhance the motional current for electromechanical transduction. For a doubly clamped ZnO nanowire resonator with radius ~10 nm and length ~1.91 µm, a resonant frequency around 21.4 MHz is observed with a quality factor (Q) of ~358 in vacuum. A comparison with the Q obtained in air (~242) shows that these nano-scale devices may be operated in fluid as viscous damping is less significant at these length scales. Additionally, the suspended nanowire bridges show field effect transistor (FET) characteristics when the underlying silicon substrate is used as a gate electrode or using a lithographically patterned in-plane gate electrode. Moreover, the Young's modulus of ZnO nanowires is extracted from a static bending test performed on a nanowire cantilever using an AFM and the value is compared to that obtained from resonant frequency measurements of electrically addressed clamped–clamped beam nanowire resonators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Piezocomposites that can operate at frequencies above 30 MHz without spurious modes are required in order to develop sufficiently sensitive high frequency arrays for high resolution imaging. However, scaling down of conventional piezocomposite fabrication techniques becomes increasingly difficult as dimensions decrease with increasing frequency. The approach presented here is to use micro-moulded 1-3 piezocomposites and a distribution of piezoelectric segment size and separation. Innovative approaches to composite pattern design, based on a randomized spatial distribution, are presented. Micro-moulding techniques are shown to be suitable for fabricating composites with dimensions required for high frequency composites. Randomized piezocomposite patterns are modeled and are shown to suppress spurious modes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new type of chemi-resistor based on a novel metal-polymer composite is described. The composite contains nickel particles with sharp nano-scale surface features, which are intimately coated by the polymer matrix so that they do not come into direct physical contact. No conductive chains of filler particles are formed even at loadings above the percolation threshold and the composite is intrinsically insulating. However, when subjected to compression the composite becomes conductive, with sample resistance falling from ≥ 1012 Ω to < 0.01 Ω. The composite can be formed into insulating granules, which display similar properties to the bulk form. A bed of granules compressed between permeable frits provides a porous structure with a start resistance set by the degree of compression while the granules are free to swell when exposed to volatile organic compounds (VOCs). The granular bed presents a large surface area for the adsorption of VOCs from the gas stream flowing through it. The response of this system to a variety of vapours has been studied for two different sizes of the granular bed and for different matrix polymers. Large responses, ΔR/R0 ≥ 10^7, are observed when saturated vapours are passed through the chemi-resistor. Rapid response allows real time sensing of VOCs and the initial state is recovered in a few seconds by purging with an inert gas stream. The variation in response as a function of VOC concentration is determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An innovative approach for fabricating pillar arrays for ultrasonic transducer applications is disclosed. It involves the preparation of concentrated piezoelectric lead zirconate titanate (PZT) suspensions in aqueous solutions of epoxy resin and its polymerization upon adding a polyamine based hardener. Zeta potential and rheological measurements revealed that 1wt.% dispersant, 20wt.% of epoxy resin and a hardener/epoxy resin ratio of 0.275mLg -1, were the optimized contents to obtain strong PZT samples with high green strength (35.21±0.39MPa). Excellent ellipsoidal and semi-circle shaped pillar arrays presenting lateral dimensions lower than 10μm and 100μm height were successfully achieved. The organics burning off was conducted at 500°C for 2h at a heating rate of 1°Cmin -1. Sintering was then carried out in the same heating cycle at 1200°C for 1h. The microstructures of the green and sintered ceramics were homogeneous and no large defects could be detected. © 2011 Elsevier Ltd.