972 resultados para Physical sciences Public opinion Fiji
Resumo:
The formation of radicals in poly(vinyl alcohol), PVA, powder irradiated at 77 K by gamma -rays and the transformations of these radicals during photolysis with visible wavelengths and on thermal annealing have been studied. After irradiation a four-line ESR spectrum was observed. It was assigned to a triplet of the C-alpha-radical (38%), with a splitting of 3.27 mT, superimposed on a doublet (62%) with a splitting of 2.7 mT. The doublet appears to be composed of two radicals, one of which is photo-bleachable (58%) and the other which is not photo-bleachable (42%). This suggests that the latter radical is a neutral radical. The photo-bleachable component of the doublet has been assigned to a carbonyl anion radical. but the second doublet due to a neutral radical is unassigned. The total G-value for formation of radicals at 77 K was found to be 2.41 +/- 0.03. Upon illumination with visible light, the anion radicals were removed and the doublet components or the spectrum diminished in intensity, while the three-line spectrum of the C-alpha-radical became more clearly visible. This transition was due to the photo-detachment of electrons from traps which were proposed to be located on carbonyl groups in the polymer resulting from incomplete hydrolysis of the vinyl acetate. The photo-decay of the anion radicals could be satisfactorily described by a two-stage process. The first stage comprised the decay of approximately 80% of the anion radicals present, while the second stage was associated with the decay of the remaining 20%. Subsequent thermal annealing of a photolysed sample to 290 K led to a change in the shape of the spectrum to form a more clearly defined triplet, As the doublet of the neutral radical decays on thermal annealing between 150 and 250K, the C-alpha-radical is formed. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
We examine constraints on quantum operations imposed by relativistic causality. A bipartite superoperator is said to be localizable if it can be implemented by two parties (Alice and Bob) who share entanglement but do not communicate, it is causal if the superoperator does not convey information from Alice to Bob or from Bob to Alice. We characterize the general structure of causal complete-measurement superoperators, and exhibit examples that are causal but not localizable. We construct another class of causal bipartite superoperators that are not localizable by invoking bounds on the strength of correlations among the parts of a quantum system. A bipartite superoperator is said to be semilocalizable if it can be implemented with one-way quantum communication from Alice to Bob, and it is semicausal if it conveys no information from Bob to Alice. We show that all semicausal complete-measurement superoperators are semi localizable, and we establish a general criterion for semicausality. In the multipartite case, we observe that a measurement superoperator that projects onto the eigenspaces of a stabilizer code is localizable.
Resumo:
We consider the statistical properties of the local density of states of a one-dimensional Dirac equation in the presence of various types of disorder with Gaussian white-noise distribution. It is shown how either the replica trick or supersymmetry can be used to calculate exactly all the moments of the local density of states.' Careful attention is paid to how the results change if the local density of states is averaged over atomic length scales. For both the replica trick and supersymmetry the problem is reduced to finding the ground state of a zero-dimensional Hamiltonian which is written solely in terms of a pair of coupled spins which are elements of u(1, 1). This ground state is explicitly found for the particular case of the Dirac equation corresponding to an infinite metallic quantum wire with a single conduction channel. The calculated moments of the local density of states agree with those found previously by Al'tshuler and Prigodin [Sov. Phys. JETP 68 (1989) 198] using a technique based on recursion relations for Feynman diagrams. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We solve the Sp(N) Heisenberg and SU(N) Hubbard-Heisenberg models on the anisotropic triangular lattice in the large-N limit. These two models may describe respectively the magnetic and electronic properties of the family of layered organic materials K-(BEDT-TTF)(2)X, The Heisenberg model is also relevant to the frustrated antiferromagnet, Cs2CuCl4. We find rich phase diagrams for each model. The Sp(N) :antiferromagnet is shown to have five different phases as a function of the size of the spin and the degree of anisotropy of the triangular lattice. The effects of fluctuations at finite N are also discussed. For parameters relevant to Cs2CuCl4 the ground state either exhibits incommensurate spin order, or is in a quantum disordered phase with deconfined spin-1/2 excitations and topological order. The SU(N) Hubbard-Heisenberg model exhibits an insulating dimer phase, an insulating box phase, a semi-metallic staggered flux phase (SFP), and a metallic uniform phase. The uniform and SFP phases exhibit a pseudogap, A metal-insulator transition occurs at intermediate values of the interaction strength.
Resumo:
A flow tagging technique based upon ionic fluorescence in strontium is investigated for applications to velocity measurements in gas flows. The method is based upon a combination of two laser based spectroscopic techniques, i.e. resonantly-enhanced ionisation and laser-induced ionic fluorescence. Strontium is first ionised and then planar laser-induced fluorescence is utilised to give 2D 'bright images' of the ionised region of the flow at a given time delay. The results show that this method can be used for velocity measurements. The velocities were measured in two types of air-acetylene flames - a slot burner and a circular burner yielding velocities of 5.1 +/- 0.1 m/s and 9.3 +/- 0.2 m/s, respectively. The feasibility of the method for the determination of velocities in faster flows than those investigated here is discussed.
Resumo:
Quantum dynamics simulations can be improved using novel quasiprobability distributions based on non-orthogonal Hermitian kernel operators. This introduces arbitrary functions (gauges) into the stochastic equations. which can be used to tailor them for improved calculations. A possible application to full quantum dynamic simulations of BEC's is presented. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We investigate the theory of quantum fluctuations in non-equilibrium systems having large critical fluctuations. This allows us to treat the limits imposed by nonlinearities to quantum squeezing and noise reduction, and also to envisage future tests of quantum theory in regions of macroscopic quantum fluctuations. A long-term objective of this research is to identify suitable physical systems in which macroscopic 'Schrodinger cat'-like behaviour may be observed. We investigate two systems in particular of much current experimental interest, namely the degenerate parametric oscillator near threshold, and the evaporatively cooled (BEC). We compare the results obtained in the positive-P representation, as a fully quantum mechanical calculation, with the truncated Wigner phase space equation, also known as semi-classical theory. We show when these results agree and differ in calculations taken beyond the linearized approximation. In the region where the largest quantum fluctuations and Schrodinger cat-like behaviour might be expected, we find that the quantum predictions correspond very closely to the semi-classical theory. Nature abhors observing a Schrodinger car.
Resumo:
The quasi mode theory of macroscopic quantization in quantum optics and cavity QED developed by Dalton, Barnett and Knight is generalized. This generalization allows for cases in which two or more quasi permittivities, along with their associated mode functions, are needed to describe the classical optics device. It brings problems such as reflection and refraction at a dielectric boundary, the linear coupler, and the coupling of two optical cavities within the scope of the theory. For the most part, the results that are obtained here are simple generalizations of those obtained in previous work. However the coupling constants, which are of great importance in applications of the theory, are shown to contain significant additional terms which cannot be 'guessed' from the simpler forms. The expressions for the coupling constants suggest that the critical factor in determining the strength of coupling between a pair of quasi modes is their degree of spatial overlap. In an accompanying paper a fully quantum theoretic derivation of the laws of reflection and refraction at a boundary is given as an illustration of the generalized theory. The quasi mode picture of this process involves the annihilation of a photon travelling in the incident region quasi mode, and the subsequent creation of a photon in either the incident region or transmitted region quasi modes.
Resumo:
The generalization of the quasi mode theory of macroscopic quantization in quantum optics and cavity QED presented in the previous paper, is applied to provide a fully quantum theoretic derivation of the laws of reflection and refraction at a boundary. The quasi mode picture of this process involves the annihilation of a photon travelling in the incident region quasi mode, and the subsequent creation of a photon in either the incident region or transmitted region quasi modes. The derivation of the laws of reflection and refraction is achieved through the dual application of the quasi mode theory and a quantum scattering theory based on the Heisenberg picture. Formal expressions from scattering theory are given for the reflection and transmission coefficients. The behaviour of the intensity for a localized one photon wave packet coming in at time minus infinity from the incident direction is examined and it is shown that at time plus infinity, the light intensity is only significant where the classical laws of reflection and refraction predict. The occurrence of both refraction and reflection is dependent upon the quasi mode theory coupling constants between incident and transmitted region quasi modes being nonzero, and it is seen that the contributions to such coupling constants come from the overlap of the mode functions in the boundary layer region, as might be expected from a microscopic theory.
Resumo:
This paper deals with non-Markovian behavior in atomic systems coupled to a structured reservoir of quantum electromagnetic field modes, with particular relevance to atoms interacting with the field in high-Q cavities or photonic band-gap materials. In cases such as the former, we show that the pseudomode theory for single-quantum reservoir excitations can be obtained by applying the Fano diagonalization method to a system in which the atomic transitions are coupled to a discrete set of (cavity) quasimodes, which in turn are coupled to a continuum set of (external) quasimodes with slowly varying coupling constants and continuum mode density. Each pseudomode can be identified with a discrete quasimode, which gives structure to the actual reservoir of true modes via the expressions for the equivalent atom-true mode coupling constants. The quasimode theory enables cases of multiple excitation of the reservoir to now be treated via Markovian master equations for the atom-discrete quasimode system. Applications of the theory to one, two, and many discrete quasimodes are made. For a simple photonic band-gap model, where the reservoir structure is associated with the true mode density rather than the coupling constants, the single quantum excitation case appears to be equivalent to a case with two discrete quasimodes.
Resumo:
What fundamental constraints characterize the relationship between a mixture rho = Sigma (i)p(i)rho (i) of quantum states, the states rho (i) being mixed, and the probabilities p(i)? What fundamental constraints characterize the relationship between prior and posterior states in a quantum measurement? In this paper we show that then are many surprisingly strong constraints on these mixing and measurement processes that can be expressed simply in terms of the eigenvalues of the quantum states involved. These constraints capture in a succinct fashion what it means to say that a quantum measurement acquires information about the system being measured, and considerably simplify the proofs of many results about entanglement transformation.
Resumo:
A remarkable feature of quantum entanglement is that an entangled state of two parties, Alice (A) and Bob (B), may be more disordered locally than globally. That is, S(A) > S(A, B), where S() is the von Neumann entropy. It is known that satisfaction of this inequality implies that a state is nonseparable. In this paper we prove the stronger result that for separable states the vector of eigenvalues of the density matrix of system AB is majorized by the vector of eigenvalues of the density matrix of system A alone. This gives a strong sense in which a separable state is more disordered globally than locally and a new necessary condition for separability of bipartite states in arbitrary dimensions.
Resumo:
The phase estimation algorithm is so named because it allows an estimation of the eigenvalues associated with an operator. However, it has been proposed that the algorithm can also be used to generate eigenstates. Here we extend this proposal for small quantum systems, identifying the conditions under which the phase-estimation algorithm can successfully generate eigenstates. We then propose an implementation scheme based on an ion trap quantum computer. This scheme allows us to illustrate two simple examples, one in which the algorithm effectively generates eigenstates, and one in which it does not.