967 resultados para Phosphorus surface groups


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological activity introduces variability in element incorporation during calcification and thereby decreases the precision and accuracy when using foraminifera as geochemical proxies in paleoceanography. This so-called 'vital effect' consists of organismal and environmental components. Whereas organismal effects include uptake of ions from seawater and subsequent processing upon calcification, environmental effects include migration- and seasonality-induced differences. Triggering asexual reproduction and culturing juveniles of the benthic foraminifer Ammonia tepida under constant, controlled conditions allow environmental and genetic variability to be removed and the effect of cell-physiological controls on element incorporation to be quantified. Three groups of clones were cultured under constant conditions while determining their growth rates, size-normalized weights and single-chamber Mg/Ca and Sr/Ca using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Results show no detectable ontogenetic control on the incorporation of these elements in the species studied here. Despite constant culturing conditions, Mg/Ca varies by a factor of similar to 4 within an individual foraminifer while intra-individual Sr/Ca varies by only a factor of 1.6. Differences between clone groups were similar to the intra-clone group variability in element composition, suggesting that any genetic differences between the clone-groups studied here do not affect trace element partitioning. Instead, variability in Mg/Ca appears to be inherent to the process of bio-calcification itself. The variability in Mg/Ca between chambers shows that measurements of at least 6 different chambers are required to determine the mean Mg/Ca value for a cultured foraminiferal test with a precision of <= 10%

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To reconstruct Export Productivity (Pexp), 27 taxonomic categories of the planktonic foraminifera census data were used with the modern analog technique SIMMAX 28 (Pflaumann et al., 1996, doi:10.1029/95PA01743; 2003, doi:10.1029/2002PA000774). To the 26 taxonomic groups widely used and listed in Kucera et al. (2005, doi:10.1016/j.quascirev.2004.07.014), Turborotalita humilis was added in our calibration as it is associated with the PCC source region (Meggers et al., 2002, doi:10.1016/S0967-0645(02)00103-0). The modern analog file is based on the Iberian margin database (Salgueiro et al., 2008, doi:10.1016/j.marmicro.2007.09.003) combined with the North Atlantic surface samples used by the MARGO project (Kucera et al., 2005). This results in a total of 999 analogs for Pexp. Modern oceanic primary productivity (PP) is obtained for each site by averaging 12 monthly primary productivity values for a 8-year period (1978-1986) that were estimated from satellite color data (CZCS) and gridded at 0.5° latitude - longitude fields (Antoine et al., 1996, doi:10.1029/95GB02832). Export Productivity (Pexp) was calculated from the PP values following the empirical relationship Pexp = PP**2/400 for primary production below 200 gC/m**2/yr, and Pexp = PP/2 for primary production above 200 gC/m2/yr (Eppley and Peterson, 1979, doi:10.1038/282677a0; Sarnthein et al., 1988, doi:10.1029/PA003i003p00361). The residuals gives the differences between satellite based Pexp and foraminiferal Pexp.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global warming may exacerbate inorganic nutrient limitation, including phosphorus (P), in the surface-waters of tropical oceans that are home to extensive blooms of the marine diazotrophic cyanobacterium, Trichodesmium. We examined the combined effects of P limitation and pCO2, forecast under ocean acidification scenarios, on Trichodesmium erythraeum IMS101 cultures. We measured nitrogen acquisition, glutamine synthetase activity, C uptake rates, intracellular Adenosine Triphosphate (ATP) concentration and the pool sizes of related key proteins. Here, we present data supporting the idea that cellular energy re-allocation enables the higher growth and N2 fixation rates detected in Trichodesmium cultured under high pCO2. This is reflected in altered protein abundance and metabolic pools. Also modified are particulate organic carbon and nitrogen production rates, enzymatic activities, and cellular ATP concentrations. We suggest that adjusting these cellular pathways to changing environmental conditions enables Trichodesmium to compensate for low P availability and to thrive in acidified oceans. Moreover, elevated pCO2 could provide Trichodesmium with a competitive dominance that would extend its niche, particularly in P-limited regions of the tropical and subtropical oceans.