999 resultados para Philippine Sea slab
Resumo:
A paleomagnetic study was made on the highly vesiculated basaltic tuff breccia (the basaltic mousse) drilled by Ocean Drilling Program Leg 126 from the Izu-Bonin backarc, Sumisu Rift, to estimate the mode of its emplacement. Thirty-four 10-cm**3 minicore samples were collected from almost all the horizons of the basaltic mousse. Stepwise thermal and alternating-field demagnetization experiments show that the natural remanent magnetizations of many samples are mainly composed of a single stable component. Although remanence inclinations are not expected to be disturbed by rotary drilling, the measured inclinations of remanence show a random directional distribution as a whole. The remanence inclinations, however, show directional consistency on a smaller scale. High-density sampling and measurements from a limited interval of drilled cores, and the measurement of small disks cut from a single minicore sample show that there is directional consistency over several centimeters. Strong and stable remanent magnetization, the existence of remanence direction consistency, and the fresh lithology of the samples suggest the thermal origin of remanence. Combining the paleomagnetic results with other geological, petrographical, and paleontological characters, the Hole 791B basaltic mousse can be interpreted as a subaqueous explosion breccia produced by deep-sea pyroclastic fountaining.
Resumo:
Refractive index and chemical composition were determined for glass shards contained in more than 100 tephra layers in DSDP Leg 58 sediment cores collected in the Shikoku Basin, North Philippine Sea. The refractive index is consistent with chemical composition. Refractive index and total iron show a linear relationship. Tephra in Pleistocene and Pliocene sediments is mostly rhyolitic and dacitic (non-alkali), whereas tephra in the Miocene shows wide composition variations in the eastern part of the basin. Basaltic tephra is recognized in Miocene sediments at Sites 443 and 444, but not at Site 442, west of the other two sites. This indicates that the basaltic tephra came from eruption relatively close to those drill sites (perhaps the Kinan Seamounts and the Shichito-Iwo Jima volcanic arc), although the exact source has not been identified.
Resumo:
The benthic foraminifer fauna at Sumisu Rift Sites 790 and 791 indicates that a deep open-ocean (>2300 m) or a basin with open-ocean access existed between 1.1 and 0.7 Ma at the time of the initiation of rifting. The appearance of a low- to medium-oxygen fauna (1600-2300 m) between 0.7 and 0.5 Ma suggests that the open-ocean access may have been terminated at this time because of the development of volcanoes and rift flank uplifts around the basin. The occurrence of low-oxygen faunas at 0.03 Ma suggests a secondary closing of the basin. The lower bathyal benthic faunas from lower Pliocene sediments of rift margin Site 788 suggest about 0.6-1.6 km of total basement uplift. This uplift may have led to the formation of the major hiatus between 2.3 and <0.3 Ma. The faunal changes of benthic foraminifers at Sites 792 and 793 in the forearc basin document a shallowing water depth from below the carbonate compensation depth (CCD) (about 3.5 km) in the late early Oligocene to the present depths of 1800 and 2975 m, respectively. These data suggest about 1 km of total basement uplift in the inner part of the forearc basin (Site 792) and about 0.6 km total basement subsidence in the central part of the forearc basin (Site 793) since about 31 Ma. The former uplift led to a thinner sediment accumulation (800 m) and the latter subsidence to a thicker sediment accumulation (1400 m) at these sites. Faunal changes of benthic foraminifers observed in Sites 782 and 786 sequences drilled at the outer-arc high document a deepening water depth from 1.3 to 2.1 km in late Eocene to the present depth of about 3 km. These data suggest about 1.1-1.9 and 1.3-2.1 km of total basement subsidence at Sites 786 and 782, respectively. These results indicate total basement uplift in the inner part of the Bonin arc-trench system since late Oligocene and total basement subsidence in the outer part of the system since late Eocene. The last occurrence (LO) of Stilostomella spp. and Pleurostomella spp. and the first occurrence (F0) of Bulimina aculeata d'Orbigny occurred consistently at 0.7 Ma at all three arc proximal sites (790,791, and 792). This fact is taken to suggest a change of water mass, from one originating from the central part of the ocean to that originating from ocean-margin areas at that time.
Resumo:
Mineralogical and major-element compositions of 72 samples of volcanic ash, recovered from Site 808 at Nankai Trough during Leg 131, were analyzed in relation to the early diagenetic alteration. Alteration products are first observed at the following depths: smectite, 200 mbsf; clinoptilolite, 646 mbsf; and analcite, 810 mbsf. Glass decomposition dominates over authigenic mineral formation between 200 and 550 mbsf in the sediment column, whereas mineral formation becomes dominant below 550 mbsf. Based on the X-ray diffraction patterns, a broad and asymmetric peak of 15A suggests a presence of illite/smectite (I/S) mixed-layered minerals in a sample from 646 mbsf. I/S mixed-layered mineral formation, however, rarely occurs even at the bottom of the sediment column (1290 mbsf) at 120° C. This is possibly because zeolite (especially clinoptilolite) formed in the ash interferes with illite formation in the smectite. The formation of alteration minerals affects the major-element chemistry of the ash and the interstitial waters. H4SiO4 concentrations in interstitial waters increase during glass decomposition and decrease with smectite and clinoptilolite formation. K is removed from interstitial water into smectite and/or clinoptilolite. Mg is fixed into smectite (and/or chlorite).
Resumo:
Data from deep sea drilling, linear magnetic anomalies and bathymetric measurements together with age and morphometric characteristics of seamounts have been used to construct a paleobathymetric map of the oceans 35 million years ago. A brief analysis of these results is presented.
Resumo:
Ocean Drilling Program (ODP) Leg 190 was programmed to investigate deformational, diagenetic, and hydrologic processes and their interactions in the Nankai Trough accretionary prism. Site 1178 is the northernmost site in the Muroto Transect. Slope sediments and the underlying landward-dipping reflector zone were successfully cored. Temperature measurements and Cl concentrations in pore water indirectly indicate the presence of gas hydrate between 120 and 400 meters below seafloor (mbsf) at Site 1178, with the highest concentrations between 150 and 200 mbsf (Shipboard Scientific Party, 2001, doi:10.2973/odp.proc.ir.190.109.2001). Sedimentary structures show a broad range of deformation structures rich in fractures, suggesting active fluid circulation in the Nankai Trough prism. One of the objectives of Leg 190 was to clarify the interplay of various fundamental processes taking place in the Nankai Trough accretionary prism. Bacteria or prokaryotes in deep subsurface sediment play an important role for material transformation and circulation in an accretionary prism. Significant amounts of bacteria are detected in many of the samples examined (Shipboard Scientific Party, 2001, doi:10.2973/odp.proc.ir.190.109.2001). The type of organic matter in sediments is an important factor related to bacterial activity. To assist investigations on material circulation in deep subsurface sediments, the samples from Site 1178 were analyzed for geolipids (extractable organic matter). The basic data set is preliminarily compiled in the present report to show the types of organic matter and their concentrations in sediments from Site 1178.
Resumo:
Early diagenesis in Leg 126 forearc and backarc sands/sandstones is characterized by the dissolution of intermediate to mafic brown glass, the alteration of colorless rhyolitic glass to clay minerals, precipitation of thin clay-mineral rim cements, and minor precipitation of clinoptilolite cements. Later, more intense diagenesis is restricted to Oligocene forearc basin sediments at Sites 787,792, and 793. In these sections, the effects of early diagenesis have been intensified and overprinted by later diagenetic effects including (1) large-scale dissolution of feldspar and pyroxene crystals, (2) further dissolution of vitric components, (3) precipitation of minor carbonate cements, and (4) pervasive, multiple-staged zeolite cementation. Zeolite minerals present include analcite, mordenite, natrolite, heulandite, wairakite, chabazite, erionite, herschelite, and phillipsite. The latest diagenetic events appear to be the minor dissolution of zeolite cements and the precipitation of minor carbonate and potassium feldspar(?) cements. Observed porosity types include primary interparticles; primary intraparticles in vesicular glass and foraminifers; primary interparticles reduced by compaction and cementation; secondary intraparticles produced by dissolution of feldspar, nonopaque heavy minerals, volcanic glass, and foraminifer tests; and secondary interparticles produced by the dissolution of zeolite cements. Within forearc Oligocene sections at Sites 787 and 792, diagenetic effects appear to decrease with depth in the Oligocene section; however, at Site 793 the majority of samples are intensely altered.
Resumo:
ODP Leg 131 recovered nannofossil-bearing sediments from Site 808 in the Nankai Trough, western Pacific Ocean. Three holes were examined for nannofossils, 808A, 808B, and 808C. A total of 22 nannofossil events were recognized, of which 10 are used as zonal markers. The sediments recovered from Hole 808A (0-111.4 mbsf) contain Pleistocene nannofossil assemblages that are mostly well preserved. All samples from this hole were assigned to nannofossil Zone NN21. The nannofossil assemblages observed in Hole 808B (111.0-358.8 mbsf) are poorly to well preserved and were all assigned to the Pleistocene. The NN21/NN20 Boundary is placed at 230.7 ± 4.4 mbsf. Hole 808C was cored from 298.5 to 1327 mbsf and basalt was reached at 1289.9 mbsf. The sediments recovered range in age from the upper part of Zone NN20 of the Pleistocene to Zone NN5 of the middle Miocene and contain poorly to well-preserved nannofossil assemblages. The Pliocene/Pleistocene Boundary, marked by the FO Gephyrocapsa caribbeanica, was placed at 776.3 ±1.6 mbsf, and the Miocene/Pliocene Boundary is tentatively placed at 955.9 ±1.5 mbsf. The lowermost sediments above basement as well as a sediment sample intercalated between basalt flows are assigned to Zone NN5, with an age of approximately 15 Ma. Age estimates provided by nannofossils show that the sedimentation rate in the trench-fill deposits of the Nankai Trough was very high, 800-1350 m/m.y (0-0.46 Ma), whereas in the Shikoku Basin deposits (> 0.46 Ma), the sedimentation rate was much lower (24-200 m/m.y). These age estimates also provide an extrapolated age of approximately 15 Ma for the basaltic basement at Site 808.