960 resultados para Perfect
Resumo:
Cryptococcosis is a global invasive mycosis associated with significant morbidity and mortality. These guidelines for its management have been built on the previous Infectious Diseases Society of America guidelines from 2000 and include new sections. There is a discussion of the management of cryptococcal meningoencephalitis in 3 risk groups: (1) human immunodeficiency virus (HIV)-infected individuals, (2) organ transplant recipients, and (3) non-HIV-infected and nontransplant hosts. There are specific recommendations for other unique risk populations, such as children, pregnant women, persons in resource-limited environments, and those with Cryptococcus gattii infection. Recommendations for management also include other sites of infection, including strategies for pulmonary cryptococcosis. Emphasis has been placed on potential complications in management of cryptococcal infection, including increased intracranial pressure, immune reconstitution inflammatory syndrome (IRIS), drug resistance, and cryptococcomas. Three key management principles have been articulated: (1) induction therapy for meningoencephalitis using fungicidal regimens, such as a polyene and flucytosine, followed by suppressive regimens using fluconazole; (2) importance of early recognition and treatment of increased intracranial pressure and/or IRIS; and (3) the use of lipid formulations of amphotericin B regimens in patients with renal impairment. Cryptococcosis remains a challenging management issue, with little new drug development or recent definitive studies. However, if the diagnosis is made early, if clinicians adhere to the basic principles of these guidelines, and if the underlying disease is controlled, then cryptococcosis can be managed successfully in the vast majority of patients.
Resumo:
We measured the midlatitude daytime ionospheric D region electron density profile height variations in July and August 2005 near Duke University by using radio atmospherics (or sferics for short), which are the high-power, broadband very low frequency (VLF) signals launched by lightning discharges. As expected, the measured daytime D region electron density profile heights showed temporal variations quantitatively correlated with solar zenith angle changes. In the midlatitude geographical regions near Duke University, the observed quiet time heights decreased from ∼80 km near sunrise to ∼71 km near noon when the solar zenith angle was minimum. The measured height quantitative dependence on the solar zenith angle was slightly different from the low-latitude measurement given in a previous work. We also observed unexpected spatial variations not linked to the solar zenith angle on some days, with 15% of days exhibiting regional differences larger than 0.5 km. In these 2 months, 14 days had sudden height drops caused by solar flare X-rays, with a minimum height of 63.4 km observed. The induced height change during a solar flare event was approximately proportional to the logarithm of the X-ray flux. In the long waveband (wavelength, 1-8 Å), an increase in flux by a factor of 10 resulted in 6.3 km decrease of the height at the flux peak time, nearly a perfect agreement with the previous measurement. During the rising and decaying phases of the solar flare, the height changes correlated more consistently with the short, rather than the long, wavelength X-ray flux changes. © 2010 by the American Geophysical Union.
Resumo:
The goal of this work is to analyze three-dimensional dispersive metallic photonic crystals (PCs) and to find a structure that can provide a bandgap and a high cutoff frequency. The determination of the band structure of a PC with dispersive materials is an expensive nonlinear eigenvalue problem; in this work we propose a rational-polynomial method to convert such a nonlinear eigenvalue problem into a linear eigenvalue problem. The spectral element method is extended to rapidly calculate the band structure of three-dimensional PCs consisting of realistic dispersive materials modeled by Drude and Drude-Lorentz models. Exponential convergence is observed in the numerical experiments. Numerical results show that, at the low frequency limit, metallic materials are similar to a perfect electric conductor, where the simulation results tend to be the same as perfect electric conductor PCs. Band structures of the scaffold structure and semi-woodpile structure metallic PCs are investigated. It is found that band structures of semi-woodpile PCs have a very high cutoff frequency as well as a bandgap between the lowest two bands and the higher bands.
Resumo:
We apply the transformation optical technique to modify or improve conventional refractive and gradient index optical imaging devices. In particular, when it is known that a detector will terminate the paths of rays over some surface, more freedom is available in the transformation approach, since the wave behavior over a large portion of the domain becomes unimportant. For the analyzed configurations, quasi-conformal and conformal coordinate transformations can be used, leading to simplified constitutive parameter distributions that, in some cases, can be realized with isotropic index; index-only media can be low-loss and have broad bandwidth. We apply a coordinate transformation to flatten a Maxwell fish-eye lens, forming a near-perfect relay lens; and also flatten the focal surface associated with a conventional refractive lens, such that the system exhibits an ultra-wide field-of-view with reduced aberration.
Resumo:
Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC), which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK) cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which Hsp90 regulates drug resistance, and that targeting stress response signaling provides a promising strategy for treating life-threatening fungal infections.
Resumo:
A Fermi gas of atoms with resonant interactions is predicted to obey universal hydrodynamics, in which the shear viscosity and other transport coefficients are universal functions of the density and temperature. At low temperatures, the viscosity has a universal quantum scale ħ n, where n is the density and ħ is Planck's constant h divided by 2π, whereas at high temperatures the natural scale is p(T)(3)/ħ(2), where p(T) is the thermal momentum. We used breathing mode damping to measure the shear viscosity at low temperature. At high temperature T, we used anisotropic expansion of the cloud to find the viscosity, which exhibits precise T(3/2) scaling. In both experiments, universal hydrodynamic equations including friction and heating were used to extract the viscosity. We estimate the ratio of the shear viscosity to the entropy density and compare it with that of a perfect fluid.
Resumo:
Doubt is a single-movement composition of roughly twelve minutes for narrator and orchestra (woodwinds, horns, and trumpets in pairs, timpani, percussion, strings). The piece explores the controversial issue of capital punishment. The text was compiled from resources found on the websites of Death Penalty Information Center (http://www.deathpenaltyinfo.org) and Anti-Death Penalty Information (http://www.antideathpenalty.org), as well as excerpts from the Bible. Doubt was conceived of as a dramatic work in which a narrator recites factual information in a direct and unemotional manner and the orchestra provides a response to the mixed emotions elicited by the text. The list of dates and case summaries presented in the middle section of the piece seemed most powerful and effective when recited in a natural speaking voice, which is why I chose not to set the text as song. Also, I chose the orchestral medium rather than a chamber setting because the nature of the topic demanded a larger range of colors and combinations, as well as a louder, fuller sound. Much of the music was composed while deciding which texts to include. Thus the music influenced the choice of text as much as the text suggested the musical setting. The four formal divisions of the piece are delineated primarily by the text. The first section is an orchestral introduction representing various emotional perspectives suggested by the texts. The narrator begins the second section with a Biblical verse over sparse orchestration. The third and main section of the piece begins with a new melody in the low strings that is closely related to the harmonic organization of the piece. The narrator lists dates of convictions, executions, exonerations and facts related to doubtful cases. The third section and the narration conclude with another brief passage from the Bible. The fourth section is a dramatic orchestral coda, bringing back the opening harmonies of juxtaposed perfect fifths. The final chord is full of tension and discord, reflecting the oppositions inherent in the topic of capital punishment: life vs. death, sympathy vs. reproach, pain vs. hope, but above all, doubt about guilt vs. innocence.
Resumo:
We present a precise theoretical explanation and prediction of certain resonant peaks and dips in the electromagnetic transmission coefficient of periodically structured slabs in the presence of nonrobust guided slab modes. We also derive the leading asymptotic behavior of the related phenomenon of resonant enhancement near the guided mode. The theory applies to structures in which losses are negligible and to very general geometries of the unit cell. It is based on boundary-integral representations of the electromagnetic fields. These depend on the frequency and on the Bloch wave vector and provide a complex-analytic connection in these parameters between generalized scattering states and guided slab modes. The perturbation of three coincident zeros-those of the dispersion relation for slab modes, the reflection constant, and the transmission constant-is central to calculating transmission anomalies both for lossless dielectric materials and for perfect metals.
Resumo:
This dissertation project focuses on J.S. Bach's Six Suites and explores the ideology of the Suites as etudes versus concert pieces. It is my belief that the evolution of the rank of the Suites in a cellist's repertoire today represents more than just historical coincidence. My premise is that the true genius of the Suites lies in their dual role as !&I efficient teaching pieces and superior performance works. Consequently, the maximum use of Bach's Six Suites as pedagogical material heightens both technical ability and deeper appreciation of the art. The dual nature of the Suites must always be emphasized: not only do these pieces provide innumerable opportunities for building cello technique, but they also offer material for learning the fundamentals of melody, harmony, dynamics, phrasing and texture. It is widely accepted among academic musicians that Bach's keyboard music serves as perfect compositions -- the model for music theory, music form and music counterpoint. I argue that we should employ the Cello Suites to this same end. The order in which the Suites are presented was deliberately chosen to highlight the contrasts in the pieces. Because the technical demands of each suite grow progressively from the previous one, they were performed non-consecutively in order to balance the difficulty and depth of each recital. The first compact disc consists of the Third Suite in C Major and Fifth Suite in C minor (with scordatura tuning), emphasizing the parallel keys. The Second Suite in D Minor and the Fourth Suite in E-flat Major comprises the compact disc. Finally, in the third compact disc, the First Suite in G Major and the Sixth Suite in D Major (composed for the five string cello piccola, but played here on a four-string cello) highlights the progression of the Suites.
Resumo:
The beauty and artistry of the variation form were fully developed and represented in the nineteenth century. The treasures of nineteenth century piano variations are a significant part of the total piano repertoire. The main goal of this dissertation is to show how various composers of the nineteenth century used the variation form to project their imagination and coloring of a simple melody. They used many different techniques to vary melodies and create their own music. Beethoven's Piano Sonata No. 12 in A-flat Major Op. 26 breaks with the conventional sonata design by using variation form instead of sonata-allegro form for the first movement, and having no movement in sonata-allegro form. Chopin's Variations Brillantes on "Je Vends des scapulaires" Op. 12 and Henri Herz's Variations on 'Non piu mesta" from "La Cenerentola" shows how they applied their art to composing variations on opera themes. Mendelssohn's Variations Serieuses Op. 54 was a reaction against the salon music in the 19" century. Schubert applies the variation form to his Impromptus in B-flat D. 935 No. 3. Schurnann's Symphonic Etudes represents a perfect example of the arts of variation, using counterpoint, and special coloring; and Faure's Theme and Variations Op. 73 represents one of the most outstanding nineteenth-century works in variation form. As a traditionalist in the nineteenth century, Brahms favored the variations over other classic forms. I have performed three of his most important sets of variations: including Variations on a theme by Schumann Op. 9, Variations on a Theme by Handel Op. 24, and Variations for two pianos on a Theme by Haydn Op. 56b. The variations listed above were divided into three recitals. These variations represent a very important part of the piano music of the nineteenth century. By discovering, preparing, and performing these wonderful works, I have grown, both as a pianist and as a musician.
Resumo:
The control of sound propagation and reflection has always been the goal of engineers involved in the design of acoustic systems. A recent design approach based on coordinate transformations, which is applicable to many physical systems, together with the development of a new class of engineered materials called metamaterials, has opened the road to the unconstrained control of sound. However, the ideal material parameters prescribed by this methodology are complex and challenging to obtain experimentally, even using metamaterial design approaches. Not surprisingly, experimental demonstration of devices obtained using transformation acoustics is difficult, and has been implemented only in two-dimensional configurations. Here, we demonstrate the design and experimental characterization of an almost perfect three-dimensional, broadband, and, most importantly, omnidirectional acoustic device that renders a region of space three wavelengths in diameter invisible to sound.
Resumo:
Cryptococcus neoformans is a pathogenic basidiomycetous yeast responsible for more than 600,000 deaths each year. It occurs as two serotypes (A and D) representing two varieties (i.e. grubii and neoformans, respectively). Here, we sequenced the genome and performed an RNA-Seq-based analysis of the C. neoformans var. grubii transcriptome structure. We determined the chromosomal locations, analyzed the sequence/structural features of the centromeres, and identified origins of replication. The genome was annotated based on automated and manual curation. More than 40,000 introns populating more than 99% of the expressed genes were identified. Although most of these introns are located in the coding DNA sequences (CDS), over 2,000 introns in the untranslated regions (UTRs) were also identified. Poly(A)-containing reads were employed to locate the polyadenylation sites of more than 80% of the genes. Examination of the sequences around these sites revealed a new poly(A)-site-associated motif (AUGHAH). In addition, 1,197 miscRNAs were identified. These miscRNAs can be spliced and/or polyadenylated, but do not appear to have obvious coding capacities. Finally, this genome sequence enabled a comparative analysis of strain H99 variants obtained after laboratory passage. The spectrum of mutations identified provides insights into the genetics underlying the micro-evolution of a laboratory strain, and identifies mutations involved in stress responses, mating efficiency, and virulence.
Resumo:
In preventing invasive fungal disease (IFD) in patients with acute myelogenous leukemia (AML) or myelodysplastic syndrome (MDS), clinical trials demonstrated efficacy of posaconazole over fluconazole and itraconazole. However, effectiveness of posaconazole has not been investigated in the United States in real-world setting outside the environment of controlled clinical trial. We performed a single-center, retrospective cohort study of 130 evaluable patients ≥18 years of age admitted to Duke University Hospital between 2004 and 2010 who received either posaconazole or fluconazole as prophylaxis during first induction or first reinduction chemotherapy for AML or MDS. The primary endpoint was possible, probable, or definite breakthrough IFD. Baseline characteristics were well balanced between groups, except that posaconazole recipients received reinduction chemotherapy and cytarabine more frequently. IFD occurred in 17/65 (27.0%) in the fluconazole group and in 6/65 (9.2%) in the posaconazole group (P = 0.012). Definite/probable IFDs occurred in 7 (10.8%) and 0 patients (0%), respectively (P = 0.0013). In multivariate analysis, fluconazole prophylaxis and duration of neutropenia were predictors of IFD. Mortality was similar between groups. This study demonstrates superior effectiveness of posaconazole over fluconazole as prophylaxis of IFD in AML and MDS patients. Such superiority did not translate to reductions in 100-day all-cause mortality.
Resumo:
Throughout the piano’s history, certain composers have created innovations in the areas of virtuosity and sonority. These innovations came not only from the composers’ imagination, but also from the development of instruments and changes in musical style from one period to another. To investigate what kinds of innovations these pianist composers made, I divided them into technique and sound from Mozart to Cowell. I chose two-piano music (Sonata in D major, K.448 by Mozart and Rachmaninoff’s Second Suite) to demonstrate their experiments with varieties of textures and sonorities, using different registers of the two pianos orchestrally. En Blanc et noir by Debussy shows this composer’s deep interest and originality in piano sonorities. For solo piano music, Beethoven’s Piano Sonata Op.53 shows extensive technical invention. His use of long pedal effects shows a pianistic possibility not explored by Mozart. Hummel’s Piano Sonata in D major represents orchestral devices as well as pianistic techniques showing recent developments in the instrument. Chopin’s Ballade No.3 and Scherzo No.3 show virtuosic moments and also the expanded range of the keyboard. His Nocturne Op.27, no.2, with its sonorities resulting from the combination of pedal, and widespread accompaniments derived from Alberti bass figures, is a perfect example of Chopin’s characteristic sound-world. “Vallée d’Obermann” by Liszt uses many virtuosic techniques as well as the extreme wide ranges of keyboard in both hands to create dramatic contrasts of texture. Debussy’s etude, “Pour les Sonorités opposés” is probably the first etude designed for sonority rather than for keyboard virtuosity. Albeniz’s “Evocación” and “Triana” show Spanish atmosphere. Prokofiev’s Sonata no.3 shows frequent motoric driving elements that demand percussive virtuosity. Cowell’s piano music is some of the earliest to explore the sonorities of tone clusters and playing on the strings. This performance dissertation consists of three recitals performed in the Orchestra Room, Leah Smith Hall, and Gildenhorn Recital Hall at the University of Maryland, College Park. These recitals are documented on compact disc recordings that are housed within the University of Maryland Library System.
Resumo:
Cryptococcus neoformans var. grubii (Cng) is the most common cause of fungal meningitis, and its prevalence is highest in sub-Saharan Africa. Patients become infected by inhaling airborne spores or desiccated yeast cells from the environment, where the fungus thrives in avian droppings, trees and soil. To investigate the prevalence and population structure of Cng in southern Africa, we analysed isolates from 77 environmental samples and 64 patients. We detected significant genetic diversity among isolates and strong evidence of geographic structure at the local level. High proportions of isolates with the rare MATa allele were observed in both clinical and environmental isolates; however, the mating-type alleles were unevenly distributed among different subpopulations. Nearly equal proportions of the MATa and MATα mating types were observed among all clinical isolates and in one environmental subpopulation from the eastern part of Botswana. As previously reported, there was evidence of both clonality and recombination in different geographic areas. These results provide a foundation for subsequent genomewide association studies to identify genes and genotypes linked to pathogenicity in humans.