863 resultados para Pct Sb Alloy
Resumo:
Die cast AZ91-xYmm (x = 0-0.8 wt.%) magnesium alloys with excellent tensile properties and corrosion resistance behavior were successfully prepared by a simple addition of yttrium-rich misch metal (Ymm) to AZ91. Influences of Ymm on the microstructure, mechanical properties and corrosion behavior of AZ91 were investigated. The results showed that addition of Ymm to die cast AZ91 alloy could re. ne the microstructure including primary alpha-Mg and eutectic beta-Mg17Al12. When the content of Ymm reached 0.8 wt.% a small quantity of Al2Y phase would form. The tensile properties were improved greatly with addition of Ymm to AZ91. The creep rate of the AZ91-Ymm alloys, tested at 150 degrees C/50MPa, was one order of magnitude lower than that of AZ91. When addition of Ymm was more than 0.3 wt.%, the salt-spray corrosion resistance of AZ91-Ymm alloys could be 30-40 times of that of AZ91. The improvement of corrosion resistance with addition of Ymm was confirmed by the results of electrochemical polarization experiments. Mechanism of the improvement of mechanical properties and corrosion behavior caused by Ymm was also discussed.
Resumo:
Microstructures and mechanical properties of the Mg-5Y-4Gd-xZn-0.4Zr alloys have been investigated. These results show that the Mg-5Y-4Gd-0.5Zn-0.4Zr alloy in the peak-aged condition exhibits the highest tensile strength, and the values of the ultimate tensile strength and yield tensile strength are 370 and 300 MPa, respectively. It is suggested that addition of 0.5% Zn has a great effect on age hardening response. The long periodic stacking structure has been found in these Zn-containing alloys, and the volume fraction of this phase increases with increasing Zn addition. This phase plays an important role in improvement of the mechanical properties, especially for the elongations. The beta' phase precipitates during the ageing process are responsible for the improvement of the mechanical properties of the alloys in the peak-aged condition.
Resumo:
A bulk alloy which consists of the single icosahedral quasicrystalline phase (I-phase) in Ti45Zr35Ni17CU3 alloy has been fabricated by mechanical alloying and subsequent pulse discharge sintering technique. Crystallographic structure analyses show that the bulk alloy is an I-phase. The transport properties of the bulk alloy are examined, and the results show that the room-temperature thermal conductivity is 5.347 W K-(1) m(-1), and the electrical conductivity decreases with increasing the temperature from 300 to 450K. The Seebeck coefficient is negative at the temperature range from 300 to 360K, and changes to positive from 370 to 450K. Hall effect measurements indicate the bulk I-phase alloy has a high carrier concentration. The specific heat capacity increases when the temperature increases from 280 to 324 K.
Resumo:
Icosahedral quasicrystalline Ti45Zr35Ni17Cu3 alloy was ball-milled with 30 mass% La0.9Zr0.1Ni4.5Al0.5 alloy (LaNi5 phase), the effect of the milling time on crystallographic and electrochemical characteristics of the alloy powder was investigated. The amount of amorphous phase increased with increasing milling time from 60 to 360 min, and the LaNi5 phase cannot be observed when milling time was 240 min or more. The maximum discharge capacity and high-rate dischargeability of milled alloy electrodes were obviously higher than those of the alloy electrode before milling. The cycling capacity retention rate after 40 cycles increased from 52.8% (t = 60 min) to 62.9% (t = 360 min).
Resumo:
Mg-7 mass%Gd-x mass%Y (x = 0, 1, 3 and 5) alloys were prepared by casting method, and the microstructures, age hardening behavior and mechanical properties have been investigated. The results show that the addition of Y to the binary Mg-7Gd alloy could reduce the grain size of the as-cast alloys, and enhance the age hardening response and improve mechanical properties during the investigated temperature range. The Mg-7Gd-5Y alloy exhibits maximum ultimate tensile strength and yield strength at peak hardness, and the values are 258 and 167 MPa at room temperature, and 212 and 140 MPa at 250 degrees C, respectively, which is about 1.8 times as high as the Mg-7Gd binary alloy. When x is more than 3, the amount of Mg-5 (Gd,Y) phase is observed at the peak hardness of aged alloys. The significant improvement of the tensile strength at peak hardness is mainly attributed to the fine dispersion of the beta-Mg-5(Gd,Y) precipitate.
Resumo:
Microstructure and mechanical properties of as-cast and heat-treated Mg–12.3Zn–5.8Y–1.4Al (ZYA1261) alloy were investigated. The phase compositions of the as-cast alloy are -Mg, Mg3YZn6 (I-phase), Mg3Y2Zn3 (W-phase), Mg12YZn (Z-phase), Mg24Y5, MgZn and a small quantity of Al-containing phase. The phase compositions change with various heat treatment conditions. The highest Vickers hardness is obtained in the alloy aged at 200 ◦C for 5 h, the transmission electron microscopy indicated that fine scale Z-phase precipitates in the matrix. The tensile properties of the as-cast and heat-treated alloys were reported.
Resumo:
Mg-20Zn-8Al-xCe(x=0-2 wt.%) alloys were prepared by metal mould casting method, the effects of Ce on the microstructure and mechanical properties of the alloys were investigated. The results showed that the dendrite as well as gram size were refined by the addition of Ce, and the best refinement was obtained in 1.39% Ce containing alloy. The main phases in the as cast alloys were alpha-Mg and tau-Mg-32 (Al, Zn)(49), and Al4Ce phase was found in the alloys contained more than 1.39% Ce. The addition of Ce improved the mechanical properties of the alloys. The strengthening mechanism was attributed to grain refinement and compound reinforced.
Resumo:
The Mg-8Zn-8Al-4RE (RE = mischmetal, mass%) magnesium alloy was prepared by using casting method. The microstructure and mechanical properties of as-cast alloy, solid solution alloy and aged alloy samples have been investigated. Optical microscopy, X-ray diffractometery and scanning electron microscope attached energy spectrometer were used to characterize the microstructure and phase composition for the alloy. Net shaped tau-Mg-32(Al,Zn)(49) phase was obtained at the grain boundary, and needle-like or blocky Al11RE3 phase disperses in grain boundary and alpha-Mg matrix. The tau-Mg-32(Al,Zn)(49) phase disappeared during solution treatment and a new phase of Al(2)CeZn2 formed during subsequent age treatment. The mechanical properties were performed by universal testing machine at room temperature, 150 degrees C and 200 degrees C, separately. The ultimate tensile strength of as-cast alloy is lower compared to an age treatment alloy at 200 degrees C for 12h. The strengths decreased with enhancing test temperature, but elongation has not been effect by age treatment.
Resumo:
Effect of cerium on the microstructure and electrochemical performance of the Ti0.25V0.35-xCexCr0.1Ni0.3 (x = 0, 0.005) electrode alloy was investigated by X-ray diffraction (XRD), field emission scanning electron microscopy/energy dispersive X-ray spectrometry (FESEM-EDS), and electrochemical impedance spectroscopy (EIS) measurements. On the basis of XRD and FESEM-EDS analysis, the alloy was mainly composed of V-based solid solution with body-centered-cubic structure and TiNi-based secondary phase. Ce did not exist in two phases, instead, it existed as Ce-rich small white particles, with irregular edges, distributed near the grain boundaries of the V-based solid solution phase. Discharge capacity, cycle stability, and high-rate discharge ability of the alloy electrode were effectively improved with the addition of Ce at 293 K. It was very surprising that the charge retention was abnormal with larger discharge capacity after standing at the open circuit for 24 h. EIS indicated that addition of Ce improved the dynamic performance, which caused the charge transfer resistance (R-T) to decrease and exchange current density (I-0) to increase markedly. The exchange current density of the electrochemical reaction on the alloy surface with Ce addition was about 2.07 and 3.10 times larger than that of the alloy without Ce at 303 and 343 K, respectively.
Resumo:
The Mg-based metal matrix composite reinforced by 10 wt.% W14Al86 alloy particles has been prepared by mechanical alloying and press-forming process. X-ray diffraction studies confirm the formation of the composite. Microstructure characterization of the samples reveals the uniform distribution of fine W14Al86 alloy. Mechanical properties characterization revealed that the reinforcement of W14Al86 alloy lead to a significant increase in hardness and tensile strength of Mg and AZ91.
Resumo:
A novel cemented carbides alloy (W0.4Al0.6)C-0.65-Co were prepared by mechanical alloying and hot-pressing sintering in this work. Hot-pressing (HP) as a common technique was performed to fabricate the bulk bodies of the hard alloys. The hardness, bending strength, density of the novel hard alloy are also tested, and it has superior mechanical properties. The hardness of (W0.4Al0.6)C-0.65-Co hard alloy was very high, and the density, operate cost of the novel material were much lower than WC-Co, more important is the aluminum dissolving is not decrease the strength compared with the WC-Co system. There is almost no eta-phase in the (W0.4Al0.6)C-0.65-Co cemented carbides system even the carbon deficient reaches the astonishing value of 35%. This novel property will give us more choice to design and gain new materials that we needed.
Resumo:
The Al50W50 alloy bulk bodies were fabricated by using mechanical alloying and hot-pressing in this work. The Al50W50 alloy had excellent thermal stability up to 1300 degreesC under vacuum and Its optimum microhardness, bending strength and compressive strength were 10.21 GPa, 570 MPa and 2.07 GPa, respectively.
Resumo:
Pure metal powder mixtures of W and Mg at the desired composition were milled in conventional high-energy ball mill, and amorphous alloy W50Mg50 was obtained after milling for 20 h. The structure evolution of elemental powder mixtures was studied following milling and subsequent high pressure and high temperature treatment. The amorphous alloy transform into a nanocrystalline material below 1050 degreesC at 4.0 GPa. On increasing the temperature, it transforms into a mixture of several new crystal phases under high-pressure condition. It also found that both mechanical alloying and high pressure treatment are the two necessary processes to form the nanocrystalline and the new phases.
Resumo:
The La0.85MgxNi4.5Co0.35Al0.15 (0.05less than or equal toxless than or equal to0.35) system compounds have been prepared by are melting method under Ar atmosphere. X-ray diffraction (XRD) analysis reveals that the as-prepared alloys have different lattice parameters and cell volumes. The electrochemical properties of these alloys have been studied through the charge-discharge recycle testing at different temperatures and discharge currents. It is found that the La0.85Mg0.25Ni4.5Co0.35Al0.(15) alloy electrode is capable of performing high-rate discharge. Moreover, it has very excellent electrochemical properties as negative electrode materials in Ni-MH battery at low temperature, even at -40degreesC.