974 resultados para Pavements, Bituminous


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Construction of an excellent network of primary highways across the State of Iowa has essentially been completed. The major task facing the Iowa Department of Transportation today is the maintenance and rehabilitation of that network. The most commonly utilized rehabilitation practice is asphalt concrete resurfacing. This practice will normally provide a good driving surface for at least 10 additional years. The major problem with asphalt concrete resurfacing is the reflection cracking from underlying cracks and joints in the portland cement concrete (PCC) pavement. Deterioration and spaling occur at these reflection cracks and are the limiting factor of the-effective life of the asphalt concrete resurfacing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The function of dowel bars is the transfer of a load across the transverse joint from one pavement slab to the adjoining slab. In the past, these transfer mechanisms have been made of steel. However, pavement damage such as loss of bonding, deterioration, hollowing, cracking and spalling start to occur when the dowels begin to corrode. A significant amount of research has been done to evaluate alternative types of materials for use in the reinforcement of concrete pavements. Initial findings have indicated that stainless steel and fiber composite materials possess properties, such as flexural strength and corrosion resistance, that are equivalent to the Department of Transportation specifications for standard steel, 1 1/2 inch diameter dowel bars. Several factors affect the load transfer of dowels; these include diameter, alignment, grouting, bonding, spacing, corrosion resistance, joint spacing, slab thickness and dowel embedment length. This research is directed at the analysis of load transfer based on material type and dowel spacing. Specifically, this research is directed at analyzing the load transfer characteristics of: (a) 8-inch verses 12-inch spacing, and (b) alternative dowel material compared to epoxy coated steel dowels, will also be analyzed. This report documents the installation of the test sections, placed in 1997. Dowel material type and location are identified. Construction observations and limitations with each dowel material are shown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a result of Chang's studies, Calderon's developments, and the need for a new test procedure to determine specific physical properties of an asphalt concrete, the Iowa Highway Research Board sponsored a research project to investigate the correlation of results of the Calderon Test with the Iowa Stability Test and the Marshall and Hveem stability tests using Iowa Type A asphaltic concrete. The project was assigned to the Bituminous. Research Laboratory of Iowa State University as Project HR 80, the. Iowa Highway Research Board, and Project 442-S of the Engineering Experiment Station.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the processing of limestone to produce commercial aggregates, a significant amount of waste limestone screenings is produced. This waste material cannot be used in highway construction because it does not meet current highway specifications. The purpose of this research was to determine if a waste limestone screenings/emulsion mix could be used to construct a base capable of supporting local traffic. A 1.27 mile section of roadway in Linn County was selected for this research. The road was divided into seven sections. Six of the sections were used to test 4" and 6" compacted base thicknesses containing 2.5%, 3.5%, and 4.5% residual asphalt contents. The seventh section was a control section containing untreated waste limestone screenings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bridge expansion joints, if not properly designed, constructed, and maintained, often lead to the deterioration of critical substructure elements. Strip seal expansion joints consisting of a steel extrusion and neoprene gland are one type of expansion joint and are commonly used by the Iowa Department of Transportation (DOT). Strip seal expansion joints are susceptible to tears and pull outs that allow water, chlorides, and debris to infiltrate the joint, and subsequently the bearings below. One area of the strip seal that is particularly problematic is where it terminates at the interface between the deck and the barrier rail. The Iowa DOT has noted that the initial construction quality of the current strip seal termination detail is not satisfactory, nor ideal, and a need exists for re-evaluation and possibly re-design of this detail. Desirable qualities of a strip seal termination detail provide a seal that is simple and fast to construct, facilitate quick gland removal and installation, and provide a reliable, durable barrier to prevent chloride-contaminated water from reaching the substructure. To meet the objectives of this research project, several strip seal termination details were evaluated in the laboratory. Alternate termination details may not only function better than the current Iowa DOT standard, but are also less complicated to construct, facilitating better quality control. However, uncertainties still exist regarding the long-term effects of using straight-through details, with or without the dogleg, that could not be answered in the laboratory in the short time frame of the research project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mechanistic-Empirical Pavement Design Guide (MEPDG) was developed under National Cooperative Highway Research Program (NCHRP) Project 1-37A as a novel mechanistic-empirical procedure for the analysis and design of pavements. The MEPDG was subsequently supported by AASHTO’s DARWin-ME and most recently marketed as AASHTOWare Pavement ME Design software as of February 2013. Although the core design process and computational engine have remained the same over the years, some enhancements to the pavement performance prediction models have been implemented along with other documented changes as the MEPDG transitioned to AASHTOWare Pavement ME Design software. Preliminary studies were carried out to determine possible differences between AASHTOWare Pavement ME Design, MEPDG (version 1.1), and DARWin-ME (version 1.1) performance predictions for new jointed plain concrete pavement (JPCP), new hot mix asphalt (HMA), and HMA over JPCP systems. Differences were indeed observed between the pavement performance predictions produced by these different software versions. Further investigation was needed to verify these differences and to evaluate whether identified local calibration factors from the latest MEPDG (version 1.1) were acceptable for use with the latest version (version 2.1.24) of AASHTOWare Pavement ME Design at the time this research was conducted. Therefore, the primary objective of this research was to examine AASHTOWare Pavement ME Design performance predictions using previously identified MEPDG calibration factors (through InTrans Project 11-401) and, if needed, refine the local calibration coefficients of AASHTOWare Pavement ME Design pavement performance predictions for Iowa pavement systems using linear and nonlinear optimization procedures. A total of 130 representative sections across Iowa consisting of JPCP, new HMA, and HMA over JPCP sections were used. The local calibration results of AASHTOWare Pavement ME Design are presented and compared with national and locally calibrated MEPDG models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fly ash, a by-product of coal-fired electricity generating plants, has for years been promoted as a material suitable for highway construction. Disposal of the large quantities of fly ash produced is expensive and creates environmental concerns. The pozzolanic properties make it promotable as a partial Portland cement replacement in pc concrete, a stabilizer for soil and aggregate in embankments and road bases, and a filler material in grout. Stabilizing soils and aggregates for road construction has the potential of using large quantities of fly ash. Iowa Highway Research Board Project HR-194, "Mission-Oriented Dust Control and Surface Improvement Processes for Unpaved Roads", included short test sections of cement, fly ash, and salvaged granular road material mixed for a base in western Iowa. The research showed that cement fly ash aggregate (CFA) has promise as a stabilizing agent in Iowa. There are several sources of sand that when mixed with fly ash may attain strengths much greater than fly ash mixed with salvaged granular road material at little additional cost

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A specification for contractor moisture quality control (QC) in roadway embankment construction has been in use for approximately 10 years in Iowa on about 190 projects. The use of this QC specification and the development of the soils certification program for the Iowa Department of Transportation (DOT) originated from Iowa Highway Research Board (IHRB) embankment quality research projects. Since this research, the Iowa DOT has applied compaction with moisture control on most embankment work under pavements. This study set out to independently evaluate the actual quality of compaction using the current specifications. Results show that Proctor tests conducted by Iowa State University (ISU) using representative material obtained from each test section where field testing was conducted had optimum moisture contents and maximum dry densities that are different from what was selected by the Iowa DOT for QC/quality assurance (QA) testing. Comparisons between the measured and selected values showed a standard error of 2.9 lb/ft3 for maximum dry density and 2.1% for optimum moisture content. The difference in optimum moisture content was as high as 4% and the difference in maximum dry density was as high as 6.5 lb/ft3 . The difference at most test locations, however, were within the allowable variation suggested in AASHTO T 99 for test results between different laboratories. The ISU testing results showed higher rates of data outside of the target limits specified based on the available contractor QC data for cohesive materials. Also, during construction observations, wet fill materials were often observed. Several test points indicated that materials were placed and accepted at wet of the target moisture contents. The statistical analysis results indicate that the results obtained from this study showed improvements over results from previous embankment quality research projects (TR-401 Phases I through III and TR-492) in terms of the percentage of data that fell within the specification limits. Although there was evidence of improvement, QC/QA results are not consistently meeting the target limits/values. Recommendations are provided in this report for Iowa DOT consideration with three proposed options for improvements to the current specifications. Option 1 provides enhancements to current specifications in terms of material-dependent control limits, training, sampling, and process control. Option 2 addresses development of alternative specifications that incorporate dynamic cone penetrometer or light weight deflectometer testing into QC/QA. Option 3 addresses incorporating calibrated intelligent compaction measurements into QC/QA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The MIT Scan T2 device has been implemented in Iowa as a new method for determining PCC pavement thickness compliance. The T2 device utilizes a magnetic pulse induction technology to measure the distance from a sensor to a metal target. The objective of this project was to conduct an interlaboratory study (ASTM C802) to determine the precision of the test.Fifteen MIT Scan T2 gauges and fifteen operators performed testing on three reference platforms and nine pavement locations of varying thicknesses. The testing was conducted on October 29, 2014 at two sites near Ames, Iowa. Usable data was obtained from every operator at all locations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Iowa DOT has been using rapid freezing in air and thawing in water to evaluate coarse aggregate durability in concrete since 1962. Earlier research had shown that the aggregate pore system was a major factor in susceptibility to D-cracking rapid deterioration. There are cases were service records show rapid deterioration of concrete containing certain aggregates on heavily salted primary roads and relatively good performance with the same aggregate in secondary pavements with limited use of deicing salt. A five-cycle salt treatment of the coarse aggregate prior to durability testing has yielded durability factors that correlate with aggregate service records on heavily salted primary pavements. X-ray fluorescence analyses have shown that sulfur contents correlate well with aggregate durabilities with higher sulfur contents producing poor durability. Trial additives that affect the salt treatment durabilities would indicate that one factor in the rapid deterioration mechanism is an adverse chemical reaction. The objective· of the current research is to develop a simple method of determining aggregate susceptibility to salt related deterioration. This method of evaluation includes analyses of both the pore system and chemical composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major objective of this project is to evaluate image analysis for characterizing air voids in Portland cement contract (PCC) and asphalt concrete (AC) and aggregate gradation in asphalt concrete. Phase 1 of this project has concentrated on evaluation and refinement of sample preparation techniques, evaluation of methods and instruments for conducting image analysis, and finally, analysis and comparison of a select portion of samples. Preliminary results suggest a strong correlation between the results obtained from the linear traverse method and image analysis methods for determining percent air voids in concrete. Preliminary work with asphalt samples has shown that damage caused by a high vacuum of the conventional scanning electron microscope (SEM) may too disruptive. Alternative solutions have been explored, including confocal microscopy and low vacuum electron microscopy. Additionally, a conventional high vacuum SEM operating at a marginal operating vacuum may suffice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research was initiated in 1991 as a part of a whitetopping project to study the effectiveness of various techniques to enhance bond strength between a new Portland cement concrete (PCC) overlay and an existing asphalt cement concrete (ACC) pavement surface. A 1,676 m (5,500 ft) section of county road R16 in Dallas County, Iowa was divided into 12 test sections. The various techniques used to enhance bond were power brooming, power brooming with air blast, milling, cement and water grout, and emulsion tack coat. As a part of these bonding techniques, two pavement thicknesses were placed; two different concrete proportions were used; and two sections were planed to a uniform cross-slope.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major objective of this research project is to utilize thermal analysis techniques in conjunction with x-ray analysis methods to identify and explain chemical reactions that promote aggregate related deterioration in Portland cement concrete. The first year of this project has been spent obtaining and analyzing limestone and dolomite samples that exhibit a wide range of field service performance. Most of the samples chosen for the study also had laboratory durability test information (ASTM C 666, method B) that was readily available. Preliminary test results indicate that a strong relationship exists between the average crystallite size of the limestone (calcite) specimens and their apparent decomposition temperatures as measured by thermogravimetric analysis. Also, premature weight loss in the thermogravimetric analysis tests appeared to be related to the apparent decomposition temperature of the various calcite test specimens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are still many vintage portland cement concrete (PCC) pavements, 18 ft wide (5.4 m), dating back to pre-World War II era in use today. Successive overlays have been placed to cover joints and to improve rideability. The average thickness of the existing asphalt cement concrete (ACC) along route E66 in Tama County, Iowa, was 6.13 in. (15.6 cm). The rehabilitation strategy called for widening the base using the top 3 in. (7.6 cm) of the existing ACC by a recycling process involving cold milling and mixing with additional emulsion/rejuvenator. The material was then placed into a widening trench and compacted to match the level of the milled surface. This project was undertaken to develop a rehabilitation methodology to widen these older pavements economically and to have a finished surface capable of carrying traffic with little or no additional work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many early Iowa Portland Cement Concrete (PCC) pavements provided good performance without deterioration for more than 50 years. In the late 1950's, Iowa was faced with severe PCC pavement deterioration called D cracking due to crushed limestone containing a bad pore system. Selective quarrying solved the problem. In 1990, cracking deterioration was identified on a three year old US 20 pavement in central Iowa. The coarse aggregate was a crushed limestone with an excellent history of performance in PCC pavement. Examination of cores showed very few cracks through the coarse aggregate particles. The cracks were predominately confined to the matrix. A high resolution, low vacuum Hitachi Scanning Electron Microscope (SEM) with an energy dispersion detector was used to investigate the deterioration. Subsequent evaluation identified very little concentration of silica gel (silicon-Si), but did identify substantial amounts of sulfur-s and aluminum-Al (assumed to be ettringite) in the air voids. Some of these voids have cracks radiating from them leading us to conclude that the ettringite filled voids were a center of pressure causing the crack. The ettringite in the voids, after being subjected to sodium chloride (NaCl) brine, initially swells and then dissolves. The research has led to the conclusion that the premature deterioration may be due to ettringite and may have been mistakenly identified as Alkali-Silica reactivity (ASR).