963 resultados para Parana continental flood basalts
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Borborema Province (BP) is a geologic domain located in Northeastern Brazil. The BP is limited at the south by the São Francisco craton, at the west by the Parnaíba basin, and both at the north and east by coastal sedimentary basins. Nonetheless the BP surface geology is well known, several key aspects of its evolution are still open, notably: i)its tectonic compartmentalization established after the Brasiliano orogenesis, ii) the architecture of its cretaceous continental margin, iii) the elastic properties of its lithosphere, and iv) the causes of magmatism and uplifting which occurred in the Cenozoic. In this thesis, a regional coverage of geophysical data (elevation, gravity, magnetic, geoid height, and surface wave global tomography) were integrated with surface geologic information aiming to attain a better understanding of the above questions. In the Riacho do Pontal belt and in the western sector of the Sergipano belt, the neoproterozoic suture of the collision of the Sul domain of the BP with the Sanfranciscana plate (SFP) is correlated with an expressive dipolar gravity anomaly. The positive lobule of this anomaly is due to the BP lower continental crust uplifting whilst the negative lobule is due to the supracrustal nappes overthrusting the SFP. In the eastern sector of the Sergipano belt, this dipolar gravity anomaly does not exist. However the suture still can be identified at the southern sector of the Marancó complex arc, alongside of the Porto da Folha shear zone, where the SFP N-S geophysical alignments are truncated. The boundary associated to the collision of the Ceará domain of the BP with the West African craton is also correlated with a dipolar gravity anomaly. The positive lobule of this anomaly coincides with the Sobral-Pedro II shear zone whilst the negative lobule is associated with the Santa Quitéria magmatic arc. Judging by their geophysical signatures, the major BP internal boundaries are: i)the western sector of the Pernambuco shear zone and the eastern continuation of this shear zone as the Congo shear zone, ii) the Patos shear zone, and iii) the Jaguaribe shear zone and its southwestern continuation as the Tatajuba shear zone. These boundaries divide the BP in five tectonic domains in the geophysical criteria: Sul, Transversal, Rio Grande do Norte, Ceará, and Médio Coreaú. The Sul domain is characterized by geophysical signatures associated with the BP and SFP collision. The fact that Congo shear zone is now proposed as part of the Transversal domain boundary implies an important change in the original definition of this domain. The Rio Grande do Norte domain presents a highly magnetized crust resulted from the superposition of precambrian and phanerozoic events. The Ceará domain is divided by the Senador Pompeu shear zone in two subdomains: the eastern one corresponds to the Orós-Jaguaribe belt and the western one to the Ceará-Central subdomain. The latter subdomain exhibits a positive ENE-W SW gravity anomaly which was associated to a crustal discontinuity. This discontinuity would have acted as a rampart against to the N-S Brasiliano orogenic nappes. The Médio Coreaú domain also presents a dipolar gravity anomaly. Its positive lobule is due to granulitic rocks whereas the negative one is caused by supracrustal rocks. The boundary between Médio Coreaú and Ceará domains can be traced below the Parnaíba basin sediments by its geophysical signature. The joint analysis of free air anomalies, free air admittances, and effective elastic thickness estimates (Te) revealed that the Brazilian East and Equatorial continental margins have quite different elastic properties. In the first one 10 km < Te < 20 km whereas in the second one Te ≤ 10 km. The weakness of the Equatorial margin lithosphere was caused by the cenozoic magmatism. The BP continental margin presents segmentations; some of them have inheritance from precambrian structures and domains. The segmentations conform markedly with some sedimentary basin features which are below described from south to north. The limit between Sergipe and Alagoas subbasins coincides with the suture between BP and SFP. Te estimates indicates concordantly that in Sergipe subbasin Te is around 20 km while Alagoas subbasin has Te around 10 km, thus revealing that the lithosphere in the Sergipe subbasin has a greater rigidity than the lithosphere in the Alagoas subbasin. Additionally inside the crust beneath Sergipe subbasin occurs a very dense body (underplating or crustal heritage?) which is not present in the crust beneath Alagoas subbasin. The continental margin of the Pernambuco basin (15 < Te < 25 km) presents a very distinct free air edge effect displaying two anomalies. This fact indicates the existence in the Pernambuco plateau of a relatively thick crust. In the Paraíba basin the free air edge effect is quite uniform, Te ≈ 15 km, and the lower crust is abnormally dense probably due to its alteration by a magmatic underplating in the Cenozoic. The Potiguar basin segmentation in three parts was corroborated by the Te estimates: in the Potiguar rift Te ≅ 5 km, in the Aracati platform Te ≅ 25 km, and in the Touros platform Te ≅ 10 km. The observed weakness of the lithosphere in the Potiguar rift segment is due to the high heat flux while the relatively high strength of the lithosphere in the Touros platform may be due to the existence of an archaean crust. The Ceará basin, in the region of Mundaú and Icaraí subbasins, presents a quite uniform free air edge effect and Te ranges from 10 to 15 km. The analysis of the Bouguer admittance revealed that isostasy in BP can be explained with an isostatic model where combined surface and buried loadings are present. The estimated ratio of the buried loading relative to the surface loading is equal to 15. In addition, the lower crust in BP is abnormally dense. These affirmations are particularly adequate to the northern portion of BP where adherence of the observed data to the isostatic model is quite good. Using the same above described isostatic model to calculate the coherence function, it was obtained that a single Te estimate for the entire BP must be lower than 60 km; in addition, the BP north portion has Te around 20 km. Using the conventional elastic flexural model to isostasy, an inversion of crust thickness was performed. It was identified two regions in BP where the crust is thickened: one below the Borborema plateau (associated to an uplifting in the Cenozoic) and the other one in the Ceará domain beneath the Santa Quitéria magmatic arc (a residue associated to the Brasiliano orogenesis). On the other hand, along the Cariri-Potiguar trend, the crust is thinned due to an aborted rifting in the Cretaceous. Based on the interpretation of free air anomalies, it was inferred the existence of a large magmatism in the oceanic crust surrounding the BP, in contrast with the incipient magmatism in the continent as shown by surface geology. In BP a quite important positive geoid anomaly exists. This anomaly is spatially correlated with the Borborema plateau and the Macaú-Queimadas volcanic lineament. The integrated interpretation of geoid height anomaly data, global shear velocity model, and geologic data allow to propose that and Edge Driven Convection (EDC) may have caused the Cenozoic magmatism. The EDC is an instability that presumably occurs at the boundary between thick stable lithosphere and oceanic thin lithosphere. In the BP lithosphere, the EDC mechanism would have dragged the cold lithospheric mantle into the hot asthenospheric mantle thus causing a positive density contrast that would have generated the main component of the geoid height anomaly. In addition, the compatibility of the gravity data with the isostatic model, where combined surface and buried loadings are present, together with the temporal correlation between the Cenozoic magmatism and the Borborema plateau uplifting allow to propose that this uplifting would have been caused by the buoyancy effect of a crustal root generated by a magmatic underplating in the Cenozoic
Resumo:
This dissertation the results of a research developed in the area of São Bento do Norte and Caiçara do Norte, northern coast of the State of Rio Grande do Norte, during the period of June of 2000 to August of 2001, in the ambit of the projects MAMBMARÉ (CNPq/CTPETRO) and PROBRAL (CAPES/DAAD). The objective principal of this research was the characterization of the sedimentary dynamics of this coast, with base in data of coastal process (winds, currents, waves and tides), with topographical risings (beach profiles and dunes), satellite images and sedimentary analyses. The more specific objectives were accomplished the coastal monitoring of this coast, to verify the maintenance of an erosive tendency or progradacional after the groynes construction for contention of the erosion in the beach of Caiçara do Norte, as well as to verify the influence of the features of bottom of the platform interns adjacent on the pole petroliferous of Guamaré. The executed monitoramento allowed to identify that the movement of the sediments, along the year, in that area, is cyclical, reaching the largest oscillations during the months of winter (deposition) and they will summer (erosion). The sedimentologic studies indicated a general tendency for sands quartzosas, with gravel presence, moderately to good selected, with asymmetry predominantly negative. In agreement with the parameter of Dean (1957), used in the identification of the state morfodinâmico of the beaches, monitored beaches, are basically reflectivas with tendency to middlemen, what frames that space of the coast norte-riograndense, as a space strongly vulnerable to erosive processes. The studies developed in the platform, it interns of this area, allowed to visualize for the first time, in large scale, the distribution of the features of the submarine bottom to the batométrico coat of 25 meters. Being pointed out the presence of a high one topographical submerged, with about 5 meters of height, 1 km of width and more than 24 meters of extension, located in the platform it interns in front of São Bento do Norte; coincident with the trend of the system of flaws of Carnaubais. This feature relay an important paper on the control of the sedimentary processes and oceanographic, as well as in the coastal evolution of this area of the RN state, and they affect the area of the pole petroliferous of Guamaré directly. These results contribute to a better knowledge of the processes in the area, and consequently as subsidies implantation of measures of coastal and environmental protection for the cities of São Bento do Norte and Caiçara do Norte, as well as to understand how the geological-sedimentary processes and oceanographic, in this area, are influencing the characteristics geoambientais of the pole petroliferous of Guamaré
Resumo:
The area studied forms a thin NNE-directed belt situated south of Recife town (Pernambuco state), northeastern Brazil. Geologically, it comprises the Pernambuco Basin (PB), which is limited by the Pernambuco Lineament to the north, the Maragogi high to the south and the Pernambuco Alagoas massif to the west, all of them with Precambrian age. This thesis reports the results obtained for the Cabo Magmatic Province (CMP), aiming the characterization of the geology, stratigraphy, geochronology, geochemistry and petrogenesis of the Cretaceous igneous rocks presented in the PB. The PB is composed of the Cabo Formation (rift phase) at the base (polymictic conglomerates, sandstones, shales), an intermediate unit, the Estiva Formation (marbles and argillites), and, at the top, the Algodoais Formation (monomictic conglomerates, sandstones, shales). The CMP is represented by trachytes, rhyolites, pyroclastics (ignimbrites), basalts / trachy-andesites, monzonites and alkali-feldspar granite, which occur as dykes, flows, sills, laccoliths and plugs. Field observations and well descriptions show that the majority of the magmatic rocks have intrusive contacts with the Cabo Formation, although some occurrences are also suggestive of synchronism between volcanism and siliciclastic sedimentation. 40Ar/39Ar and zircon fission tracks for the magmatic rocks indicate an average age of 102 r 1 Ma for the CMP. This age represents an expressive event in the province and is detected in all igneous dated materials. It is considered as a minimum age (Albian) for the magmatic episode and the peak of the rift phase in the PB. The 40Ar/39Ar dates are about 10-14 Ma younger than published palynologic ages for this basin. Geochemically, the CMP may be divided in two major groups; i) a transitional to alkaline suite, constituted by basalts to trachy-andesites (types with fine-grained textures and phenocrysts of sanidine and plagioclase), trachytes (porphyrytic texture, with phenocrysts of sanidine and plagioclase) and monzonites; ii) a alkaline suite, highly fractionated, acidic volcano-plutonic association, formed by four subtypes (pyroclastic flows ignimbrites, fine-to medium-grained rhyolites, a high level granite, and later rhyolites). These four types are distinguished essentially by field aspects and petrographic and textural features. Compatible versus incompatible trace element concentrations and geochemical modeling based on both major and trace elements suggest the evolution through low pressure fractional crystallization for trachytes and other acidic rocks, whereas basalts / trachy-andesites and monzonites evolved by partial melting from a mantle source. Sr and Nd isotopes reveal two distinct sources for the rocks of the CMP. Concerning the acidic ones, the high initial Sr ratios (ISr = 0.7064-1.2295) and the negative HNd (-0.43 to -3.67) indicate a crustal source with mesoproterozoic model ages (TDM from 0.92 to 1.04 Ga). On the other hand, the basic to intermediate rocks have low ISr (0.7031-0.7042) and positive HNd (+1.28 to +1.98), which requires the depleted mantle as the most probable source; their model ages are in the range 0.61-0.66 Ga. However, the light rare earth enrichment of these rocks and partial melting modeling point to an incompatible-enriched lherzolitic mantle with very low quantity of garnet (1-3%). This apparent difference between geochemical and Nd isotopes may be resolved by assuming that the metasomatizing agent did not obliterate the original isotopic characteristics of the magmas. A 2 to 5% partial melting of this mantle at approximately 14 kbar and 1269oC account very well the basalts and trachy-andesites studied. By using these pressure and temperatures estimates for the generation of the basaltic to trachy-andesitic magma, it is determined a lithospheric stretching (E) of 2.5. This E value is an appropriated estimate for the sub-crustal stretching (astenospheric or the base of the lithosphere?) region under the Pernambuco Basin, the crustal stretching probably being lower. The integration of all data obtained in this thesis permits to interpret the magmatic evolution of the PB as follows; 1st) the partial melting of a garnet-bearing lherzolite generates incompatible-enriched basaltic, trachy-andesitic and monzonitic magmas; 2nd) the underplating of these basaltic magmas at the base of the continental crust triggers the partial melting of this crust, and thus originating the acidic magmas; 3rd) concomitantly with the previous stage, trachytic magmas were produced by fractionation from a monzonitic to trachy-andesitic liquid; 4th) the emplacement of the several magmas in superficial (e.g. flows) or sub-superficial (e.g. dykes, sills, domes, laccoliths) depths was almost synchronically, at about 102 r 1 Ma, and usually crosscutting the sedimentary rocks of the Cabo Formation. The presence of garnet in the lherzolitic mantle does not agree with pressures of about 14 kbar for the generation of the basaltic magma, as calculated based on chemical parameters. This can be resolved by admitting the astenospheric uplifting under the rift, which would place deep and hot material (mantle plume?) at sub-crustal depths. The generation of the magmas and their subsequent emplacement would be coupled with the crustal rifting of the PB, the border (NNE-SSW directed) and transfer (NW-SE directed) faults serving as conduits for the magma emplacement. Based on the E parameter and the integration of 40Ar/39Ar and palynologic data it is interpreted a maximum duration of 10-14 Ma for the rift phase (Cabo Formation clastic sedimentation and basic to acidic magmatism) of the PB
Resumo:
On the modern Continental Shelf to the north of Rio Grande do Norte state (NE Brazil) is located a paleo-valley, submerged during the last glacial sea-level lowstand, that marks continuation of the most important river of this area (Açu River). Despite the high level of exploration activity of oil industry, there is few information about shallow stratigraphy. Aiming to fill this gap, situated on the Neogene, was worked a marine seismic investigation, the development of a processing flow for high resolution data seismic, and the recognition of the main feature morphology of the study area: the incised valley of the River Açu. The acquisition of shallow seismic data was undertaken in conjunction with the laboratory of Marine Geology/Geophysics and Environmental Monitoring - GGEMMA of Federal University of Rio Grande do Norte UFRN, in SISPLAT project, where the geomorphological structure of the Rio paleovale Açu was the target of the investigation survey. The acquisition of geophysical data has been over the longitudinal and transverse sections, which were subsequently submitted to the processing, hitherto little-used and / or few addressed in the literature, which provided a much higher quality result with the raw data. Once proposed for the flow data was developed and applied to the data of X-Star (acoustic sensor), using available resources of the program ReflexW 4.5 A surface fluvial architecture has been constructed from the bathymetric data and remote sensing image fused and draped over Digital Elevation Models to create three-dimensional (3D) perspective views that are used to analyze the 3D geometry geological features and provide the mapping morphologically defined. The results are expressed in the analysis of seismic sections that extend over the region of the continental shelf and upper slope from mouth of the Açu River to the shelf edge, providing the identification / quantification of geometrical features such as depth, thickness, horizons and units seismic stratigraphyc area, with emphasis has been placed on the palaeoenvironmental interpretation of discordance limit and fill sediment of the incised valley, control by structural elements, and marked by the influence of changes in the sea level. The interpretation of the evolution of this river is worth can bring information to enable more precise descriptions and interpretations, which describes the palaeoenvironmental controls influencing incised valley evolution and preservation to provide a better comprehensive understanding of this reservoir analog system
Resumo:
The study area is located on the Brazilian Continental Shelf adjacent to Ceará State, inserted in the submerged Potiguar Basin. This area was submitted to extensional efforts during Upper Cretaceous, associated to the begining of the rifting that resulted in African and South American Continent separation. The main goal of this research was to better understand the sedimentary and geomorphological characteristics of the continental shelf adjacent to Fortim, Aracati and Icapuí (Ceará State). The used data base included geophysical (sides scan sonar and bathymetry studies) and sedimentological survey, associated to satellite image processing and interpretation. Inferences about suspended material and longshore drift was possible using satellite images, and differente bedforms were characterized such as: different kinds of dunes (longitudinal, cross and oblique), bioclastic banks, paleochannels, flat and rock bottom. The researched area comprehended about 2509,13 km2, where 6 different sedimentary facies, based on sediment composition and texture, could be recognized, such as: Bioclastic Sand, Siliciclastic Sand, Biosiliciclastic Sand, Bioclastic gravel, Biosiliciclastic sand with granule and gravel, and Silicibioclastic sand with granule and gravel. The integration of bathymetric, satellite image, side scan sonar and sedimentological data allow us a better characterization of this continental shelf area, as to advance in the knowledge of the continental shelf of the state of Ceara, a very important area to the oil industry because of its potential exploration and e exploitation, and to environmental survey as well
Resumo:
This study had to aimed to characterize the sediments of shallow continental shelf and realize the mapping of features visible for satellite images by using remote sensing techniques, digital image processing and analysis of bathymetry between Maxaranguape and Touros - RN. The study s area is located in the continental shallow shelf of Rio Grande do Norte, Brazil, and is part of the Environmental Protection Area (APA) of Coral Reefs. A total of 1186 sediment samples were collected using a dredge type van veen and positioning of the vessel was made out with the aid of a Garmin 520s. The samples were treated In the laboratory to analyze particle size of the sediment, concentration of calcium carbonate and biogenic composition. The digital images from the Landsat-5 TM were used to mapping of features. This stage was used the band 1 (0,45-1,52 μm) where the image were georeferenced, and then adjusting the histogram, giving a better view of feature bottom and contacts between different types of bottom. The results obtained from analysis of the sediment showed that the sediments of the continental shelf east of RN have a dominance of carbonate facies and a sand-gravelly bottom because the region is dominated by biogenic sediments, that are made mainly of calcareous algae. The bedform types identified and morphological features found were validated by bathymetric data and sediment samples examined. From the results obtained a division for the shelf under study is suggested, these regions being subdivided, in well characterized: (1) Turbid Zone, (2) Coral Patch Reefs Zone, (3) Mixed Sediments Carbonates Zone, ( 4) Algae Fouling Zone, (5) Alignment Rocky Zone, (6) Sand Waves Field (7) Deposit siliciclastic sands
Resumo:
This work focuses the geomorphological characterization and spatial data modeling in the shallow continental shelf within the Folha Touros limits (SB-25-CV-II), based on bathymetric data analysis and remote sensing products interpretation. The Rio Grande do Norte state is located in northeastern Brazil and the work area is located at the transition region between the eastern and northern portions of their coast. The bathymetric surveys were conduced between march and may 2009, using a 10 meters long vessel and 0.70 meters draught, equipped with global positioning system and echo sounder (dual beam, 200KHz , 14°). The fieldwork resulted in 44 bathymetric profiles espaced 1.5 km and 30 km average length. The bathymetric data amount were 111,200 points and were navigated 1395.7 km within na area about 1,850 km2. The bathymetric data were corrected for the tide level, vessel draught and were subsequently entered into a geographic information system for further processing. Analysis of remote sensing products was carried out using Landsat 7/ETM + band 1, from november 1999. The image was used for visualization and mapping submerged features. The results showed the presence of geomorphological features within the study area. Were observed, from the analysis of local bathymetry and satellite image, seven types of geomorphological features. The channels, with two longitudinals channels (e. g. San Roque and Cioba channels) and other perpendicular to the coast (e. g. Touros, Pititinga and Barretas). Coastal reef formations (Maracajaú, Rio do Fogo and Cioba). Longitudinal waves, described in the literature as longitudinal dunes. The occurrence of a transverse dune field. Another feature observed was the oceanic reefs, an rock alignment parallel to the coast. Were identified four riscas , from north to south: risca do Liso, Gameleira, Zumbi, Pititinga (the latter being described for the first time). Finally, an oceanic terrace was observed in the deepest area of study. Image interpretation corroborated with the in situ results, enabling visualization and description for all features in the region. The results were analysed in an integrating method (using the diferent methodologies applied in this work) and it was essential to describe all features in the area. This method allowed us to evaluate which methods generated better results to describe certain features. From these results was possible to prove the existence of submerged features in the eastern shallow continental shelf of Rio Grande do Norte. In this way, the conclusions was (1) this study contributed to the provision of new information about the area in question, particularly with regard to data collection in situ depths, (2) the method of data collection and interpretation proves to be effective because, through this, it was possible to visualize and interpret the features present in the study area and (3) the interpretation and discussion of results in an integrated method, using different methodologies, can provide better results
Resumo:
Created on 3 december 1997, the REMPLAC (Program for Assessment of Mineral Potencial of the Continental Shelf), this porgram aimed to make the basic survey, systematic geological and geophysical continental shelf, detail, at an appropriate scale, sites geo-economic, and perform the analysis and evaluation of mineral deposits. The REMPLAC should continue the efforts of Global Recognition Program of the Brazilian Continental Margin REMAC closed in 1978, the operations Geophysical Sea (GEOMAR) developed by the Directorate of Hydrography and Navigation and the various initiatives of the Program of Marine Geology and Geophysics (PGGM). Despite the high interest on the Amazon platform, there is little information o their morphology and sediment characterization, and in order to fill this gap, the present work samples sedimentological point followed by seismic acquisition. And the studies were to characterize the possible area of interest as being directly influence by tides, which sediments are reworked throughout the platform featuring grain angle with sharp corners, and the carbonate content increases as it approaches the breakdown the platform, and the bodies found outside the foraminifera and mollusks. However, diverging with organic matter that reduces its concentration as it moves away from the coast. The seismic profiles do not get satisfactory results because of low visibility, however, to correlate with the spot samples, of sediment were possible morphological characterization of the area.
Resumo:
Pyrometamorphism results from conditions of high temperatures and very low pressures provoked by the intrusion of hypabyssal basic bodies into sedimentary or metassedimentary hosting rocks. The onshore portion of the Potiguar Basin in NE Brazil offers examples of this type of metamorphism nearby the contacts of Paleogene to Neogene plugs, sills and dikes of diabases and basalts crosscutting sandstones, siltstones and shales of the Açu Formation (Albian-Cenomanian). The thermal effects over these rocks are reflected on textures and minerals assemblages that characterize the sanidinite facies of metamorphism, often with partial melting of the feldspathic and mica-rich matrix. The liquid formed is potassic and peraluminous, with variably colored rhyolitic glass (colorless, yellow, brown) comprising microcrystals of tridymite, sanidine and clinoenstatite, besides residual detrital clasts of quartz and rarely zircon, staurolite and garnet. Lenses of shale intercalated within the sandstones display crystallites of Fe-cordierite (sekaninaite), mullite, sanidine, armalcolite (Fe-Ti oxide) and brown spinel. The rocks formed due to the thermal effect of the intrusions are called buchites for which two types are herein described: a light one derived from feldspathic sandstone and siltstone protoliths; and a dark one derived from black shale protoliths. Textures indicating partial melting and minerals such as sanidine, mullite, tridymite and armalcolite strongly demonstrate that during the intrusion of the basic bodies the temperature reached 1,000-1,150°C, and was followed by quenching. Cooling of the interstitial melts has as consequences the closure of pores and decrease of the permeability of the protolith, which varies from about 17-11% in the unaffected rocks to zero in the thermally modified types. Although observed only at contacts and over small distances, the number of basic intrusions hosted within the Potiguar Basin in both onshore and offshore portions leaves opened the possibility of important implications of the thermal effects over the hydrocarbon exploration in this area as well in other Cretaceous and Paleozoic basins in Brazil
Resumo:
This work presents the results of the first imaging of continental slope adjacent to Potiguar Basin, in the equatorial Brazilian margin (NE Brazil). Swath bathymetry provided a complete coverage of seafloor between the upper and middle slope (100-1,300 m). Fifteen submarine canyons were mapped. The shape of the slope reflects in distinct spatial distribution of the canyons. The western area displays convex profiles which implied a greater amount of incisions by canyons. Some of them have gradient walls higher than 35°. They were classified according to location and morphology. The canyons with heads indenting shelf edge, association with a incised valley and a large fluvial system, high sinuosities, V shape, terraces along margins, further erosive features such as landslide and gullies allow to deduce a sandy-gravelly sedimentation. These canyons are associated with deposition of submarine fan systems that have been considered permeable hydrocarbon reservoirs. The presence of gullies, furrows and dunes demonstrates the role of bottom currents in the shaping of the slope. The enlargement of canyons and the change in the course when they cross the border fault imply that tectonic has also influenced in the morphology of deep waters environments of Potiguar Basin. The current sedimentation of continental slope is considered mixed because the sediments are composed of siliciclastics and bioclasts. Predominant siliciclastics are calcite, dolomite, quartz, and clay minerals. The presence of stable minerals (zircon, tourmaline and rutile), and fragmented bioclasts implies the contributions of Rivers Açu and Apodi
Resumo:
The brazilian marginal basins have a huge potential to generate and accumulate petroleum. Incised valleys which are eroded in response to a fall of relative sea level are related to potential reservoir as well, modern drowned-valley estuaries serve as harbors to petroleum and salt industries, fisheries, waste-disposal sites and recreational areas for a significant fraction of the world s population. The combined influence of these factors has produced a dramatic increase in research on modern and ancient incised-valley systems. This research is one expression of this interest. The integrated use of satellites images and high resolution seismic (bathymetry, sides scan sonar) was used on the Apodi River mouth-RN to characterizes the continental shelf This area is located at the Potiguar Basin in the NE Brazilian Equatorial Atlantic margin. Through bathymetric and side scan sonar data processing, a digital Terrain Model was developed, and a detailed geomorphologic analysis was performed. In this way was possible to recognize the geomorphologic framework and differents sismofacies, which may influence this area. A channel extending from the ApodiMossoró river mouth to the shelf edge dominates the investigated area. This structure can be correlated with the former river valley developed during the late Pleistocene sea level fall. This channel has two main directions (NW-SE and NE-SW) probably controlled by the Potiguar Basin structures. The western margin of the channel is relatively steep and pronounced whereas the eastern margin consists only of a gentle slope. Longitudinal bedforms and massive ridges also occur. The first are formed doe to the shelf sediment rework and the reef-like structures probably are relics of submerged beachrock-lines indicating past shoreline positions during the deglacial sea-level rise. The sub-bottom seismic data allow the identification of different sismic patterns and a marcant discontinuity, interpreted as the Upper
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Habitat fragmentation and diseases have resulted in a decline of the marsh deer (Blastocerus (dichotomus) throughout its South American range. Our objectives were to determine whether marsh deer intended for translocation from a region of the Rio Parana Basin had been infected previously by foot-and-mouth disease virus (FMDV) and whether they were carrying virus We captured marsh deer from June to October 1998 and collected blood from 108 animals and esophageal-pharyngeal fluid from 53 Serum was tested for antibodies against three FMDV serotypes (O, A, and C) by liquid-phase-blocking sandwich enzyme-linked immunosorbent assay (ELISA) Esophageal-pharyngeal fluid was tested for FMDV RNA by reverse transcription polymerase chain reaction (RT-PCR) and inoculation into three successive baby hamster kidney (BHK-21) cell subcultures, followed by RT-PCR of cultures We detected low log(10) titers (range 1 0-1 5) to FM DV subtype A(24) Cruzeiro in 19 of 108 sampled marsh deer, but failed to isolate FMDV or detect FMDV RNA in any samples we conclude that marsh deer from our study site were unlikely to carry FMDV, however, as a preventive measure, the 19 animals with titers for FMDV were not sent to FMDV-free Brazilian states