909 resultados para Parallel Control Algorithm
Resumo:
Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.
Resumo:
Over the last decade, there has been a trend where water utility companies aim to make water distribution networks more intelligent in order to improve their quality of service, reduce water waste, minimize maintenance costs etc., by incorporating IoT technologies. Current state of the art solutions use expensive power hungry deployments to monitor and transmit water network states periodically in order to detect anomalous behaviors such as water leakage and bursts. However, more than 97% of water network assets are remote away from power and are often in geographically remote underpopulated areas, facts that make current approaches unsuitable for next generation more dynamic adaptive water networks. Battery-driven wireless sensor/actuator based solutions are theoretically the perfect choice to support next generation water distribution. In this paper, we present an end-to-end water leak localization system, which exploits edge processing and enables the use of battery-driven sensor nodes. Our system combines a lightweight edge anomaly detection algorithm based on compression rates and an efficient localization algorithm based on graph theory. The edge anomaly detection and localization elements of the systems produce a timely and accurate localization result and reduce the communication by 99% compared to the traditional periodic communication. We evaluated our schemes by deploying non-intrusive sensors measuring vibrational data on a real-world water test rig that have had controlled leakage and burst scenarios implemented.
Resumo:
Understanding the complexity of live pig trade organization is a key factor to predict and control major infectious diseases, such as classical swine fever (CSF) or African swine fever (ASF). Whereas the organization of pig trade has been described in several European countries with indoor commercial production systems, little information is available on this organization in other systems, such as outdoor or small-scale systems. The objective of this study was to describe and compare the spatial and functional organization of live pig trade in different European countries and different production systems. Data on premise characteristics and pig movements between premises were collected during 2011 from Bulgaria, France, Italy, and Spain, which swine industry is representative of most of the production systems in Europe (i.e., commercial vs. small-scale and outdoor vs. indoor). Trade communities were identified in each country using the Walktrap algorithm. Several descriptive and network metrics were generated at country and community levels. Pig trade organization showed heterogeneous spatial and functional organization. Trade communities mostly composed of indoor commercial premises were identified in western France, northern Italy, northern Spain, and north-western Bulgaria. They covered large distances, overlapped in space, demonstrated both scale-free and small-world properties, with a role of trade operators and multipliers as key premises. Trade communities involving outdoor commercial premises were identified in western Spain, south-western and central France. They were more spatially clustered, demonstrated scale-free properties, with multipliers as key premises. Small-scale communities involved the majority of premises in Bulgaria and in central and Southern Italy. They were spatially clustered and had scale-free properties, with key premises usually being commercial production premises. These results indicate that a disease might spread very differently according to the production system and that key premises could be targeted to more cost-effectively control diseases. This study provides useful epidemiological information and parameters that could be used to design risk-based surveillance strategies or to more accurately model the risk of introduction or spread of devastating swine diseases, such as ASF, CSF, or foot-and-mouth disease.
Resumo:
A new semi-implicit stress integration algorithm for finite strain plasticity (compatible with hyperelas- ticity) is introduced. Its most distinctive feature is the use of different parameterizations of equilibrium and reference configurations. Rotation terms (nonlinear trigonometric functions) are integrated explicitly and correspond to a change in the reference configuration. In contrast, relative Green–Lagrange strains (which are quadratic in terms of displacements) represent the equilibrium configuration implicitly. In addition, the adequacy of several objective stress rates in the semi-implicit context is studied. We para- metrize both reference and equilibrium configurations, in contrast with the so-called objective stress integration algorithms which use coinciding configurations. A single constitutive framework provides quantities needed by common discretization schemes. This is computationally convenient and robust, as all elements only need to provide pre-established quantities irrespectively of the constitutive model. In this work, mixed strain/stress control is used, as well as our smoothing algorithm for the complemen- tarity condition. Exceptional time-step robustness is achieved in elasto-plastic problems: often fewer than one-tenth of the typical number of time increments can be used with a quantifiable effect in accuracy. The proposed algorithm is general: all hyperelastic models and all classical elasto-plastic models can be employed. Plane-stress, Shell and 3D examples are used to illustrate the new algorithm. Both isotropic and anisotropic behavior is presented in elasto-plastic and hyperelastic examples.
Resumo:
The present doctoral thesis discusses the ways to improve the performance of driving simulator, provide objective measures for the road safety evaluation methodology based on driver’s behavior and response and investigates the drivers' adaptation to the driving assistant systems. The activities are divided into two macro areas; the driving simulation studies and on-road experiments. During the driving simulation experimentation, the classical motion cueing algorithm with logarithmic scale was implemented in the 2DOF motion cueing simulator and the motion cues were found desirable by the participants. In addition, it found out that motion stimuli could change the behaviour of the drivers in terms of depth/distance perception. During the on-road experimentations, The driver gaze behaviour was investigated to find the objective measures on the visibility of the road signs and reaction time of the drivers. The sensor infusion and the vehicle monitoring instruments were found useful for an objective assessment of the pavement condition and the drivers’ performance. In the last chapter of the thesis, the safety assessment during the use of level 1 automated driving “ACC” is discussed with the simulator and on-road experiment. The drivers’ visual behaviour was investigated in both studies with innovative classification method to find the epochs of the distraction of the drivers. The behavioural adaptation to ACC showed that drivers may divert their attention away from the driving task to engage in secondary, non-driving-related tasks.
Resumo:
Choosing natural enemies to suppress pest population has been for a long the key of biological control. Overtime the term biological control has also been applied to the use of suppressive soils, bio-disinfection and biopesticides. Biological control agents (BCA) and natural compounds, extracted or fermented from various sources, are the resources for containing phytopathogens. BCA can act through direct antagonism mechanisms or inducing hypovirulence of the pathogen. The first part of the thesis focused on mycoviruses infecting phytopathogenic fungi belonging to the genus Fusarium. The development of new approaches capable of faster dissecting the virome of filamentous fungi samples was performed. The semiconductor-based sequencer Ion Torrent™ and the nanopore-based sequencer MinION have been exploited to analyze DNA and RNA referable to viral genomes. Comparison with GeneBank accessions and sequence analysis allowed to identify more than 40 putative viral species, some of these mycovirus genera have been studied as inducers of hypovirulence in several phytopathogenic fungi, therefore future works will focus on the comparison of the morphology and physiology of the fungal strain infected and cured by the viruses identified and their possible use as a biocontrol agent. In a second part of the thesis the potential of botanical pesticides has been evaluated for the biocontrol of phloem limited phytopathogens such as phytoplasmas. The only active compounds able to control phytoplasmas are the antibiotic oxytetracyclines and in vitro direct and fast screening of new antimicrobials compounds on media is almost impossible due to the difficulty to culture phytoplasmas. For this reason, a simple and reliable screening method was developed to evaluate the effects of antimicrobials directly on phytoplasmas by an “ex-vivo” approach. Using scanning electron microscopy (SEM) in parallel with molecular tools (ddRT-PCR), the direct activity of tetracyclines on phytoplasma cells was verified, identifying also a promising compound showing similar activity.
Resumo:
Nowadays the production of increasingly complex and electrified vehicles requires the implementation of new control and monitoring systems. This reason, together with the tendency of moving rapidly from the test bench to the vehicle, leads to a landscape that requires the development of embedded hardware and software to face the application effectively and efficiently. The development of application-based software on real-time/FPGA hardware could be a good answer for these challenges: FPGA grants parallel low-level and high-speed calculation/timing, while the Real-Time processor can handle high-level calculation layers, logging and communication functions with determinism. Thanks to the software flexibility and small dimensions, these architectures can find a perfect collocation as engine RCP (Rapid Control Prototyping) units and as smart data logger/analyser, both for test bench and on vehicle application. Efforts have been done for building a base architecture with common functionalities capable of easily hosting application-specific control code. Several case studies originating in this scenario will be shown; dedicated solutions for protype applications have been developed exploiting a real-time/FPGA architecture as ECU (Engine Control Unit) and custom RCP functionalities, such as water injection and testing hydraulic brake control.
Resumo:
This master thesis work is focused on the development of a predictive EHC control function for a diesel plug-in hybrid electric vehicle equipped with a EURO 7 compliant exhaust aftertreatment system (EATS), with the purpose of showing the advantages provided by the implementation of a predictive control strategy with respect to a rule-based one. A preliminary step will be the definition of an accurate powertrain and EATS physical model, starting from already existing and validated applications. Then, a rule-based control strategy managing the torque split between the electric motor (EM) and the internal combustion engine (ICE) will be developed and calibrated, with the main target of limiting tailpipe NOx emission by taking into account EM and ICE operating conditions together with EATS conversion efficiency. The information available from vehicle connectivity will be used to reconstruct the future driving scenario, also referred to as electronic horizon (eHorizon), and in particular to predict ICE first start. Based on this knowledge, an EATS pre-heating phase can be planned to avoid low pollutant conversion efficiencies, thus preventing high NOx emission due to engine cold start. Consequently, the final NOx emission over the complete driving cycle will be strongly reduced, allowing to comply with the limits potentially set by the incoming EURO 7 regulation. Moreover, given the same NOx emission target, the gain achieved thanks to the implementation of an EHC predictive control function will allow to consider a simplified EATS layout, thus reducing the related manufacturing cost. The promising results achieved in terms of NOx emission reduction show the effectiveness of the application of a predictive control strategy focused on EATS thermal management and highlight the potential of a complete integration and parallel development of involved vehicle physical systems, control software and connectivity data management.
Resumo:
Underactuated cable-driven parallel robots (UACDPRs) shift a 6-degree-of-freedom end-effector (EE) with fewer than 6 cables. This thesis proposes a new automatic calibration technique that is applicable for under-actuated cable-driven parallel robots. The purpose of this work is to develop a method that uses free motion as an exciting trajectory for the acquisition of calibration data. The key point of this approach is to find a relationship between the unknown parameters to be calibrated (the lengths of the cables) and the parameters that could be measured by sensors (the swivel pulley angles measured by the encoders and roll-and-pitch angles measured by inclinometers on the platform). The equations involved are the geometrical-closure equations and the finite-difference velocity equations, solved using the least-squares algorithm. Simulations are performed on a parallel robot driven by 4 cables for validation. The final purpose of the calibration method is, still, the determination of the platform initial pose. As a consequence of underactuation, the EE is underconstrained and, for assigned cable lengths, the EE pose cannot be obtained by means of forward kinematics only. Hence, a direct-kinematics algorithm for a 4-cable UACDPR using redundant sensor measurements is proposed. The proposed method measures two orientation parameters of the EE besides cable lengths, in order to determine the other four pose variables, namely 3 position coordinates and one additional orientation parameter. Then, we study the performance of the direct-kinematics algorithm through the computation of the sensitivity of the direct-kinematics solution to measurement errors. Furthermore, position and orientation error upper limits are computed for bounded cable lengths errors resulting from the calibration procedure, and roll and pitch angles errors which are due to inclinometer inaccuracies.
Resumo:
Il carcinoma squamocellulare è il tumore maligno orale più frequente nel gatto e si caratterizza per diagnosi spesso tardiva e prognosi infausta. Il progetto riguarda la ricerca di marker di rilevanza dia-gnostica nel carcinoma squamocellulare orale felino (FOSCC), al fine di sviluppare un test di scree-ning non invasivo. È stata condotta un’analisi retrospettiva delle disregolazioni del gene oncosoppres-sore TP53 in campioni istologici di FOSCC e di una popolazione di controllo (lesioni infiammatorie croniche orali e mucose orali normali feline). Tramite next-generation sequencing (NGS) sono state rilevate mutazioni di TP53 nel 69% dei FOSCC, ed anche l’espressione immunoistochimica della pro-teina p53 era presente nel 69% dei tumori, con una concordanza discreta (77%) fra le due alterazioni. Nella popolazione di controllo erano presenti disregolazioni di p53 solo in due lesioni infiammatorie (3%). Successivamente è stata effettuata un’analisi prospettica con NGS della metilazione del DNA di 17 geni, noti per essere disregolati nel carcinoma squamocellulare orale umano o felino, insieme all’analisi mutazionale di TP53, in campioni istologici di FOSCC e in un gruppo di controllo. Le stesse indagini molecolari sono state svolte in parallelo su campioni di cellule prelevate mediante brushing orale. Utilizzando 6 dei geni indagati differenzialmente metilati nei FOSCC (FLI1, MiR124-1, KIF1A, MAGEC2, ZAP70, MiR363) e lo stato mutazionale diTP53, è stato impostato un algoritmo diagnostico per differenziare i FOSCC dalla mucosa orale non neoplastica. Applicato ai brushing, l’algoritmo è risultato positivo (indicativo di carcinoma) in 24/35 (69%) gatti con FOSCC, contro 2/60 (3%) controlli (sensibilità: 69%; specifici-tà: 97%). La quota di FOSCC identificati era significativamente maggiore nei gatti sottoposti a prelievo in anestesia generale rispetto ai gatti svegli. Questi risultati sono incoraggianti per il riconoscimento precoce del FOSCC tramite brushing orale. Saranno necessari ulteriori studi su casistiche più ampie per validare questa metodica e migliorarne la sensibilità.
Resumo:
The research project aims to study and develop control techniques for a generalized three-phase and multi-phase electric drive able to efficiently manage most of the drive types available for traction application. The generalized approach is expanded to both linear and non- linear machines in magnetic saturation region starting from experimental flux characterization and applying the general inductance definition. The algorithm is able to manage fragmented drives powered from different batteries or energy sources and will be able to ensure operability even in case of faults in parts of the system. The algorithm was tested using model-in-the-loop in software environment and then applied on experimental test benches with collaboration of an external company.
Resumo:
This thesis deals with robust adaptive control and its applications, and it is divided into three main parts. The first part is about the design of robust estimation algorithms based on recursive least squares. First, we present an estimator for the frequencies of biased multi-harmonic signals, and then an algorithm for distributed estimation of an unknown parameter over a network of adaptive agents. In the second part of this thesis, we consider a cooperative control problem over uncertain networks of linear systems and Kuramoto systems, in which the agents have to track the reference generated by a leader exosystem. Since the reference signal is not available to each network node, novel distributed observers are designed so as to reconstruct the reference signal locally for each agent, and therefore decentralizing the problem. In the third and final part of this thesis, we consider robust estimation tasks for mobile robotics applications. In particular, we first consider the problem of slip estimation for agricultural tracked vehicles. Then, we consider a search and rescue application in which we need to drive an unmanned aerial vehicle as close as possible to the unknown (and to be estimated) position of a victim, who is buried under the snow after an avalanche event. In this thesis, robustness is intended as an input-to-state stability property of the proposed identifiers (sometimes referred to as adaptive laws), with respect to additive disturbances, and relative to a steady-state trajectory that is associated with a correct estimation of the unknown parameter to be found.
Resumo:
This work deals with the development of calibration procedures and control systems to improve the performance and efficiency of modern spark ignition turbocharged engines. The algorithms developed are used to optimize and manage the spark advance and the air-to-fuel ratio to control the knock and the exhaust gas temperature at the turbine inlet. The described work falls within the activity that the research group started in the previous years with the industrial partner Ferrari S.p.a. . The first chapter deals with the development of a control-oriented engine simulator based on a neural network approach, with which the main combustion indexes can be simulated. The second chapter deals with the development of a procedure to calibrate offline the spark advance and the air-to-fuel ratio to run the engine under knock-limited conditions and with the maximum admissible exhaust gas temperature at the turbine inlet. This procedure is then converted into a model-based control system and validated with a Software in the Loop approach using the engine simulator developed in the first chapter. Finally, it is implemented in a rapid control prototyping hardware to manage the combustion in steady-state and transient operating conditions at the test bench. The third chapter deals with the study of an innovative and cheap sensor for the in-cylinder pressure measurement, which is a piezoelectric washer that can be installed between the spark plug and the engine head. The signal generated by this kind of sensor is studied, developing a specific algorithm to adjust the value of the knock index in real-time. Finally, with the engine simulator developed in the first chapter, it is demonstrated that the innovative sensor can be coupled with the control system described in the second chapter and that the performance obtained could be the same reachable with the standard in-cylinder pressure sensors.
Resumo:
This thesis aims to illustrate the construction of a mathematical model of a hydraulic system, oriented to the design of a model predictive control (MPC) algorithm. The modeling procedure starts with the basic formulation of a piston-servovalve system. The latter is a complex non linear system with some unknown and not measurable effects that constitute a challenging problem for the modeling procedure. The first level of approximation for system parameters is obtained basing on datasheet informations, provided workbench tests and other data from the company. Then, to validate and refine the model, open-loop simulations have been made for data matching with the characteristics obtained from real acquisitions. The final developed set of ODEs captures all the main peculiarities of the system despite some characteristics due to highly varying and unknown hydraulic effects, like the unmodeled resistive elements of the pipes. After an accurate analysis, since the model presents many internal complexities, a simplified version is presented. The latter is used to linearize and discretize correctly the non linear model. Basing on that, a MPC algorithm for reference tracking with linear constraints is implemented. The results obtained show the potential of MPC in this kind of industrial applications, thus a high quality tracking performances while satisfying state and input constraints. The increased robustness and flexibility are evident with respect to the standard control techniques, such as PID controllers, adopted for these systems. The simulations for model validation and the controlled system have been carried out in a Python code environment.
Resumo:
Driving simulators emulate a real vehicle drive in a virtual environment. One of the most challenging problems in this field is to create a simulated drive as real as possible to deceive the driver's senses and cause the believing to be in a real vehicle. This thesis first provides an overview of the Stuttgart driving simulator with a description of the overall system, followed by a theoretical presentation of the commonly used motion cueing algorithms. The second and predominant part of the work presents the implementation of the classical and optimal washout algorithms in a Simulink environment. The project aims to create a new optimal washout algorithm and compare the obtained results with the results of the classical washout. The classical washout algorithm, already implemented in the Stuttgart driving simulator, is the most used in the motion control of the simulator. This classical algorithm is based on a sequence of filters in which each parameter has a clear physical meaning and a unique assignment to a single degree of freedom. However, the effects on human perception are not exploited, and each parameter must be tuned online by an engineer in the control room, depending on the driver's feeling. To overcome this problem and also consider the driver's sensations, the optimal washout motion cueing algorithm was implemented. This optimal control-base algorithm treats motion cueing as a tracking problem, forcing the accelerations perceived in the simulator to track the accelerations that would have been perceived in a real vehicle, by minimizing the perception error within the constraints of the motion platform. The last chapter presents a comparison between the two algorithms, based on the driver's feelings after the test drive. Firstly it was implemented an off-line test with a step signal as an input acceleration to verify the behaviour of the simulator. Secondly, the algorithms were executed in the simulator during a test drive on several tracks.