974 resultados para PSYCHROPHILIC BACTERIUM


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biooxidation of ferrous ion into ferric ion by Acidithiobacillus ferrooxidans can be potentially used for the removal of H2S from industrial gases. In this work, Fe3+ ions were obtained through the oxidation of Fe2+ using the LR strain of At. ferrooxidans immobilized in PVC stands in a pilot-scale bioreactor, while H2S was removed in an absorption tower equipped with Rasching rings. At. ferrooxidans LR strain cells were immobilized by inoculating the bacterium in a Fe2+-mineral medium and percolating it through the support. After complete Fe2+ oxidation, which took around 90 h, the reactor was washed several times with sulfuric acid (pH 1.7) before a new cycle was started. Four additional cycles using fresh Fe2+ mineral medium were then run. During these colonization cycles, the time required for complete iron oxidation decreased, dropping to about 60 h in the last cycle. The batch experiments in the H2S gas removal trials resulted in a gas removal rate of about 98-99% under the operational conditions employed. In the continuous experiments with the bioreactor coupled to the gas absorption column, a gas removal efficiency of almost 100% was reached after 500 min. Precipitate containing mainly sulfur formed during the experimental trial was identified by EDX. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Xylella fastidiosa is a xylem-limited, Gram-negative bacterium responsible for citrus variegated chlorosis (CVC) in sweet oranges. In the present study, we present the recombinant expression, purification and characterization of an X. fastidiosa cysteine protease (dubbed Xylellain). The recombinant Xylellain ((HIS)Xylellain) was able to hydrolyze carbobenzoxy-Phe-Arg-7-amido-4-methylcoumarin (Z-FR-MCA) and carbobenzoxy-Arg-Arg-7-amido-4-methylcoumarin (Z-RR-MCA) with similar catalytic efficiencies, suggesting that this enzyme presents substrate specificity requirements similar to cathepsin B. The immunization of mice with (HIS)Xylellain provided us with antibodies, which recognized a protein of c. 31 kDa in the X. fastidiosa pathogenic strains 9a5c, and X. fastidiosa isolated from coffee plants. However, these antibodies recognized no protein in the nonpathogenic X. fastidiosa J1a12, suggesting the absence or low expression of this protein in the strain. These findings enabled us to identify Xylellain as a putative target for combating CVC and other diseases caused by X. fastidiosa strains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Citrus variegated chlorosis (CVC) and coffee leaf scorch (CLS) are two economically important diseases in Brazil caused by the bacterium Xylella fastidiosa. Strains of the bacterium isolated from the two plant hosts are very closely related, and the two diseases share sharpshooter insect vectors. In order to determine if citrus strains of X. fastidiosa could infect coffee and induce CLS disease, plant inoculations were performed. Plants of coffee, Coffea arabica 'Mundo Novo', grafted on Coffea canephora var, robusta 'Apuatao 2258' were mechanically inoculated with triply cloned strains of X. fastidiosa isolated from diseased coffee and citrus. Three months postinoculation, 5 of the 10 plants inoculated with CLS-X. fastidiosa and 1 of the 10 plants inoculated with CVC-X. fastidiosa gave positive enzyme-linked immunosorbent assay (ELISA) and/or polymerase chain reaction (PCR). Eight months postinoculation, another six plants inoculated with CVC-X. fastidiosa gave positive PCR results. The two X. fastidiosa strains were isolated from the inoculated plants and showed the same characteristics as the original clones by microscopy, ELISA, and PCR. None of the plants inoculated with sterile periwinkle wilt (PW) medium as controls gave positive reactions in diagnostic tests, and none developed disease symptoms. Six months postinoculation, seven plants inoculated with CLS-X. fastidiosn and eight inoculated with CVC-X. fastidiosa began to develop characteristic CLS symptoms, including apical and marginal leaf scorch, defoliation, and reductions of internode length, leaf size, and plant height, terminal clusters of small chlorotic and deformed leaves, and lateral shoot dieback. We have demonstrated that X, fastidiosa from citrus plants is pathogenic for coffee plants. This has important consequences for the management of CLS disease and has implications for the origin of citrus variegated chlorosis disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work aimed to determine the oral microbiotic composition of snakes from Sao Jose do Rio Preto city, São Paulo State, Brazil. Ten snake species, comprising the families Boidae, Colubridae, Elapidae and Viperidae, were submitted to microbiological examination of their oral cavity, which indicated positivity for all buccal samples. Gram-negative bacilli, gram-negative cocci bacilli, gram-positive bacilli and gram-positive cocci were isolated from the snakes. Among isolated bacterium species, the occurrence of coagulase-negative staphylococci in the buccal cavity of Crotalus durissus (Viperiade), Eunectes murinus (Boidae), Mastigodryas bifossatus (Colubridae) and Bacillus subtilis, common to oral cavity of Bothrops alternatus (Viperidae) and Phalotris mertensi (Colubridae), was detected. It was observed higher diversity of isolated bacteria from the oral cavity of Micrurus frontalis (Elapidae) and Philodryas nattereri (Colubridae), as well as the prevalence of gram-positive baccillus and gram-positive cocci. The composition of the oral microbiota of the studied snakes, with or without inoculating fangs, is diverse and also related to the formation of abscesses at the bite site in the victims of the ophidian accidents, and to pathogenic processes in the snakes that host these microorganisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Xylella fastidiosa is a phytopathogen that causes diseases in different plant species. The development of disease symptoms is associated to the blockage of the xylem vessels caused by biofilm formation. In this study, we evaluated the sensitivity of biofilm and planktonic cells to copper, one of the most important antimicrobial agents used in agriculture. We measured the exopolysaccharides (EPS) content in biofilm and planktonic cells and used real-time reverse transcription polymerase chain reaction to evaluate the expression of the genes encoding proteins involved in cation/multidrug extrusion (acrA/B, mexE/czcA, and metI) and others associated with different copper resistance mechanisms (copB, cutA1, cutA2, and cutC) in the X. fastidiosa biofilm formed in two different media. We confirmed that biofilms are less susceptible to copper than planktonic cells. The amount of EPS seems to be directly related to the resistance and it varies according to the media where the cells are grown. The same was observed for gene expression. Nevertheless, some genes seem to have a greater importance in biofilm cells resistance to copper. Our results suggest a synergistic effect between diffusion barriers and other mechanisms associated with bacterial resistance in this phytopathogen. These mechanisms are important for a bacterium that is constantly under stress conditions in the host.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Xylella fastidiosa is an important pathogen bacterium transmitted by xylem-feedings leafhoppers that colonizes the xylem of plants and causes diseases on several important crops including citrus variegated chlorosis (CVC) in orange and lime trees. Glutathione-S-transferases (GST) form a group of multifunctional isoenzymes that catalyzes both glutathione (GSH)-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GSTs are the major detoxification enzymes found in the intracellular space and mainly in the cytosol from prokaryotes to mammals, and may be involved in the regulation of stress-activated signals by suppressing apoptosis signal-regulating kinase 1. In this study, we describe the cloning of the glutathione-S-transferase from X. fastidiosa into pET-28a(+) vector, its expression in Escherichia coli, purification and initial structural characterization. The purification of recombinant xfGST (rxfGST) to near homogeneity was achieved using affinity chromatography and size-exclusion chromatography (SEC). SEC demonstrated that rxfGST is a homodimer in solution. The secondary and tertiary structures of recombinant protein were analyzed by circular dichroism and fluorescence spectroscopy, respectively. The enzyme was assayed for activity and the results taken together indicated that rxfGST is a stable molecule, correctly folded, and highly active. Several members of the GST family have been extensively studied. However, xfGST is part of a less-studied subfamily which yet has not been structurally and biochemically characterized. In addition, these studies should provide a useful basis for future studies and biotechnological approaches of rxfGST. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Co-inoculation of the fungus Aspergillus niger and the bacterium Burkholderia cepacia was undertaken to understand the interaction between different species of phosphate-solubilizing microorganisms (PSM). PSM were inoculated in a single or mixed (A. nigerB.similar to cepacia) culture. During 9 similar to days of incubation, microbial biomass was enhanced, accompanied with increases in the levels of soluble phosphate and titratable acidity, as well as increased acid phosphatase activity. Production of acids and levels of phosphate solubilization were greater in the co-culture of A.similar to nigerB.similar to cepacia than in the single culture. The quantity of phosphate solubilized by the co-culture ranged from 40.51 +/- 0.60 to 1103.64 +/- 1.21 similar to mu g similar to PO4 3-similar to mL-1 and was 922% higher than single cultures. pH of the medium dropped from 7.0 to 3.0 in the A.similar to niger culture, 3.1 in the co-culture, and 4.2 in the B.similar to cepacia culture. on the third day of postinoculation, acid production by the co-culture (mean 5.40 +/- 0.31 similar to mg NaOH mL-1) was 1990% greater than single cultures. Glucose concentration decreased almost completely (9799% of the starting concentration) by the ninth day of the incubation. These results show remarkable synergism by the co-culture in comparison with single cultures in the solubility of CaHPO4 under in vitro conditions. This synergy between microorganisms can be used in poor available phosphate soils to enhance phosphate solubilization.