868 resultados para POLYTETRAFLUOROETHYLENE MEMBRANE
Resumo:
To determine whether internal limiting membrane (ILM) peeling improves anatomic and functional outcomes of full-thickness macular hole (FTMH) surgery when compared with the no-peeling technique.
Resumo:
Grape-seed procyanidins (GSPE) modulate glucose homeostasis and it was suggested that GSPE may achieve this by enhancing the secretion of incretin hormones such as glucagon-like peptide-1 (GLP-1). Therefore, the aim of the present study is to examine in detail the effects of GSPE on intestinal endocrine cells (STC-1). GSPE was found to modulate plasma membrane potential in enteroendocrine cells, inducing depolarization at low concentrations (0.05 mg/L) and hyperpolarization at high concentrations (50 mg/L), and surprisingly this was also accompanied by suppressed GLP-1 secretion. Furthermore, how GSPE affects STC-1 cells under nutrient-stimulated conditions (i.e. glucose, linoleic acid and L-proline) was also explored, and we found that the higher GSPE concentration was effective in limiting membrane depolarization and reducing GLP-1 secretion. Next, it was also examined whether GSPE affected mitochondrial membrane potential, finding that this too is altered by GSPE, however this does not appear to explain the observed effects on plasma membrane potential and GLP-1 secretion. In conclusion, our results show that grape-seed procyanidins modulate cellular membrane potential and nutrient-induced enteroendocrine hormone secretion in STC-1 cells.
Resumo:
Introduction: Juvenile idiopathic arthritis (JIA) is the most common rheumatological disease of childhood with a prevalence of around 1 in 1000. Without appropriate treatment it can have devastating consequences including permanent disability from joint destruction and growth deformities. Disease aetiology remains unknown. Investigation of disease pathology at the level of the synovial membrane is required if we want to begin to understand the disease at the molecular and biochemical level. The synovial membrane proteome from early disease-stage, treatment naive JIA patients was compared between polyarticular and oligoarticular subgroups.
Methods: Protein was extracted from 15 newly diagnosed, treatment naive JIA synovial membrane biopsies and separated by two dimensional fluorescent difference in-gel electrophoresis. Proteins displaying a two-fold or greater change in expression levels between the two subgroups were identified by matrix assisted laser desorption ionization-time of flight mass spectrometry with expression further verified by Western blotting and immunohistochemistry.
Results: Analysis of variance analysis (P <= 0.05) revealed 25 protein spots with a two-fold or greater difference in expression levels between polyarticular and oligoarticular patients. Hierarchical cluster analysis with Pearson ranked correlation revealed two distinctive clusters of proteins. Some of the proteins that were differentially expressed included: integrin alpha 2b (P = 0.04); fibrinogen D fragment (P =0.005); collagen type VI (P = 0.03); fibrinogen gamma chain (P = 0.05) and peroxiredoxin 2 (P = 0.02). The identified proteins are involved in a number of different processes including platelet activation and the coagulation system.
Conclusions: The data indicates distinct synovial membrane proteome profiles between JIA subgroups at an early stage in the disease process. The identified proteins also provide insight into differentially perturbed pathways which could influence pathological events at the joint level.
Resumo:
The Aquivion short-side-chain (SSC) perfluorosulfonic acid (PFSA) ionomer was adopted in catalyst layers (CL) of polymer electrolyte membrane water electrolysers (PEMWE) instead of long-side-chain (LSC) Nafion ionomer. The effects of SSC ionomer content in CL for oxygen evolution reaction were studied in half cell with cyclic voltammetry and steady state linear sweep. In a single cell test the MEA with SSC-PFSA Aquivion ionomer exhibited better thermal stability than the one with LSC-PFSA Nafion ionomer at 90 °C. The cell voltage at a current density of 1 A cm was 1.63 V at 90 °C using the SSC-PFSA Aquivion ionomer binder, Nafion 117 membrane, and without back pressurizing. In a continuous operation the cell voltage degradation rate of the MEA using Aquivion ionomer binder was only about 0.82 mV h.
Resumo:
Bimetallic catalyst system of ruthenium oxide (RuO) and niobium oxide (NbO) was prepared using the Adams method and the hydrolysis method. Physical and electrochemical characterizations of the catalysts were studied using X-ray diffraction (XRD), Scanning electron microscopy (SEM), cyclic voltammogram (CV) and polarization measurements. NbO addition to RuO was found to increase the stability of RuO. In Adams method the sodium nitrate was found to be forming complex with NbO at high temperature reaction. This makes Adams method unsuitable for the synthesis of RuO -NbO bimetallic system. Hydrolysis method on other hand does not have this problem. But a proper mixture of two oxides was not obtained in hydrolysis method. A lower crystallite size for bimetallic system was obtained with Adams method compared to hydrolysis method. RuO prepared by Adams method had higher activity compared to the hydrolysis counterpart in electrolyzer operation with nafion membrane. A cell voltage of 1.62 V was obtained with RuO (A) at 1 A/cm. A higher stability for RuNbO(A) compared to RuO(A) was observed in continuous cyclic voltammogram and electrolyzer cell test. Copyright © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Antimony doped tin oxide (ATO) was studied as a support material for IrO2 in proton exchange membrane water electrolyser (PEMWE). Adams fusion method was used to prepare the IrO2-ATO catalysts. The physical and electrochemical characterisation of the catalysts were carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder conductivity, cyclic voltammetry (CV) and membrane electrode assembly (MEA) polarisation. The BET surface area and electronic conductivity of the supported catalysts were found to be predominantly arisen from the IrO2. Supported catalyst showed higher active surface area than the pristine IrO2 in CV analysis with 85% H3PO4 as electrolyte. The MEA performance using Nafion®−115 membrane at 80 °C and atmospheric pressure showed a better performance for IrO2 loading ≥60 wt.% than the pristine IrO2 with a normalised current density of 1625 mA cm−2 @1.8 V for the 60% IrO2-ATO compared to 1341 mA cm−2 for the pristine IrO2 under the same condition. The higher performance of the supported catalysts was mainly attributed to better dispersion of active IrO2 on electrochemically inactive ATO support material, forming smaller IrO2 crystallites. A 40 wt.% reduction in the IrO2 was achieved by utilising the support material.
Resumo:
Indium tin oxide (ITO) was used as a support for IrO2 catalyst in the oxygen evolution reaction. IrO2 nanoparticles were deposited in various loading on commercially available ITO nanoparticle, 17–28 nm in size using the Adam's fusion method. The prepared catalysts were characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The BET surface area of the support (35 m2/g) was 3 times lower than the unsupported IrO2 (112.7 m2/g). The surface area and electronic conductivity of the catalysts were predominantly contributed by the IrO2. The supported catalysts were tested in a membrane electrode assembly (MEA) for electrolyser operation. The 90% IrO2-ITO gave similar performance (1.74 V@1 A/cm2) to that of the unsupported IrO2 (1.73 V@1 A/cm2) in the MEA polarisation test at 80 °C with Nafion 115 membrane which was attributed to a better dispersion of the active IrO2 on the electrochemically inactive ITO support, giving rise to smaller catalyst particle and thereby higher surface area. Large IrO2 particles on the support significantly reduced the electrode performance. A comparison of TiO2 and ITO as support material showed that, 60% IrO2 loading was able to cover the support surface and giving sufficient conductivity to the catalyst.
Resumo:
Processing of the 'CaaX' motif found on the C-termini of many proteins, including the proto-oncogene Ras, requires the ER (endoplasmic reticulum)-resident protease RCE1 (Ras-converting enzyme 1) and is necessary for the proper localization and function of many of these 'CaaX' proteins. In the present paper, we report that several mammalian species have a novel isoform (isoform 2) of RCE1 resulting from an alternate splice site and producing an N-terminally truncated protein. We demonstrate that both RCE1 isoform 1 and the newly identified isoform 2 are required to reinstate proper H-Ras processing and thus plasma membrane localization in RCE1-null cells. In addition, we show that the deubiquitinating enzyme USP17 (ubiquitin-specific protease 17), previously shown to modulate RCE1 activity, can regulate the abundance and localization of isoform 2. Furthermore, we show that isoform 2 is ubiquitinated on Lys43 and deubiquitinated by USP17. Collectively, the findings of the present study indicate that RCE1 isoform 2 is required for proper 'CaaX' processing and that USP17 can regulate this via its modulation of RCE1 isoform 2 ubiquitination.
Resumo:
Heterocyclic aromatic amines (HCA) are carcinogenic mutagens formed during cooking of proteinaceous foods, particularly meat. To assist in the ongoing search for biomarkers of HCA exposure in blood, a method is described for the extraction from human plasma of the most abundant HCAs: 2-Amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) (and its isomer 7,8-DiMeIQx), using Hollow Fibre Membrane Liquid-Phase Microextraction. This technique employs 2.5 cm lengths of porous polypropylene fibres impregnated with organic solvent to facilitate simultaneous extraction from an alkaline aqueous sample into a low volume acidic acceptor phase. This low cost protocol is extensively optimised for fibre length, extraction time, sample pH and volume. Detection is by UPLC-MS/MS using positive mode electrospray ionisation with a 3.4 min runtime, with optimum peak shape, sensitivity and baseline separation being achieved at pH 9.5. To our knowledge this is the first description of HCA chromatography under alkaline conditions. Application of fixed ion ratio tolerances for confirmation of analyte identity is discussed. Assay precision is between 4.5 and 8.8% while lower limits of detection between 2 and 5 pg/mL are below the concentrations postulated for acid-labile HCA-protein adducts in blood.
Resumo:
The deletion of the gene encoding the glycerol facilitator Fps1p was associated with an altered plasma membrane lipid composition in Saccharomyces cerevisiae. The S. cerevisiae fps1delta strain respectively contained 18 and 26% less ergosterol than the wild-type strain, at the whole-cell level and at the plasma membrane level. Other mutants with deficiencies in glycerol metabolism were studied to investigate any possible link between membrane ergosterol content and intracellular glycerol accumulation. In these mutants a modification in intracellular glycerol concentration, or in intra- to extracellular glycerol ratio was accompanied by a reduction in plasma membrane ergosterol content. However, there was no direct correlation between ergosterol content and intracellular glycerol concentration. Lipid composition influences the membrane permeability for solutes during adaptation of yeast cells to osmotic stress. In this study, ergosterol supplementation was shown to partially suppress the hypo-osmotic sensitivity phenotype of the fps1delta strain, leading to more efficient glycerol efflux, and improved survival. The erg-1 disruption mutant, which is unable to synthesise ergosterol, survived and recovered from the hypo-osmotic shock more successfully when the concentration of exogenously supplied ergosterol was increased. The results obtained suggest that a higher ergosterol content facilitates the flux of glycerol across the plasma membrane of S. cerevisiae cells.
Resumo:
A commercial polymeric film (Parafilm M (R), a blend of a hydrocarbon wax and a polyolefin) was evaluated as a model membrane for microneedle (MN) insertion studies. Polymeric MN arrays were inserted into Parafilm M (R) (PF) and also into excised neonatal porcine skin. Parafilm M (R) was folded before the insertions to closely approximate thickness of the excised skin. Insertion depths were evaluated using optical coherence tomography (OCT) using either a force applied by a Texture Analyser or by a group of human volunteers. The obtained insertion depths were, in general, slightly lower, especially for higher forces, for PF than for skin. However, this difference was not a large, being less than the 10% of the needle length. Therefore, all these data indicate that this model membrane could be a good alternative to biological tissue for MN insertion studies. As an alternative method to OCT, light microscopy was used to evaluate the insertion depths of MN in the model membrane. This provided a rapid, simple method to compare different MN formulations. The use of Parafilm M (R), in conjunction with a standardised force/time profile applied by a Texture Analyser, could provide the basis for a rapid MN quality control test suitable for in-process use. It could also be used as a comparative test of insertion efficiency between candidate MN formulations.
Resumo:
Predatory Bdellovibrio bacteriovorus bacteria are remarkable in that they attach to, penetrate and digest other Gram-negative bacteria, living and replicating within them until all resources are exhausted, when they escape the prey ghost to invade fresh prey. Remarkable remodeling of both predator and prey cell occurs during this process to allow the Bdellovibrio to exploit the intracellular niche they have worked so hard to enter, keeping the prey "bdelloplast" intact until the end of predatory growth. If one views motile non-predatory bacteria in a light microscope, one is immediately struck by how rare it is for bacteria to collide. This highlights how the cell surface of Bdellovibrio must be specialized and adapted to allow productive collisions and further to allow entry into the prey periplasm and subsequent secretion of hydrolytic enzymes to digest it. Bdellovibrio can, however, also be made to grow artificially without prey; thus, they have a large genome containing both predatory genes and genes for saprophytic heterotrophic growth. Thus, the membrane and outer surface layers are a patchwork of proteins encompassing not only those that have a sole purpose in heterotrophic growth but also many more that are specialized or employed to attach to, enter, remodel, kill and ultimately digest prey cells. There is much that is as yet not understood, but molecular genetic and post-genomic approaches to microbial physiology have enhanced the pioneering biochemical work of four decades ago in characterizing some of the key events and surface protein requirements for prey attack.
Resumo:
We recently demonstrated that incorporation of 4-amino-4-deoxy-l-arabinose (l-Ara4N) to the lipid A moiety of lipopolysaccharide (LPS) is required for transport of LPS to the outer membrane and viability of the Gram-negative bacterium Burkholderia cenocepacia. ArnT is a membrane protein catalyzing the transfer of l-Ara4N to the LPS molecule at the periplasmic face of the inner membrane, but its topology and mechanism of action are not well characterized. Here, we elucidate the topology of ArnT and identify key amino acids that likely contribute to its enzymatic function. PEGylation assays using a cysteineless version of ArnT support a model of 13 transmembrane helices and a large C-terminal region exposed to the periplasm. The same topological configuration is proposed for the Salmonella enterica serovar Typhimurium ArnT. Four highly conserved periplasmic residues in B. cenocepacia ArnT, tyrosine-43, lysine-69, arginine-254 and glutamic acid-493, were required for activity. Tyrosine-43 and lysine-69 span two highly conserved motifs, 42RYA44 and 66YFEKP70, that are found in ArnT homologues from other species. The same residues in S. enterica ArnT are also needed for function. We propose these aromatic and charged amino acids participate in either undecaprenyl phosphate-l-Ara4N substrate recognition or transfer of l-Ara4N to the LPS.
Resumo:
AIMS: To assess quantitatively variations in the extent of capillary basement membrane (BM) thickening between different retinal layers and within arterial and venous environments during diabetes.
METHODS: One year after induction of experimental (streptozotocin) diabetes in rats, six diabetic animals together with six age-matched control animals were sacrificed and the retinas fixed for transmission electron microscopy (TEM). Blocks of retina straddling the major arteries and veins in the central retinal were dissected out, embedded in resin, and sectioned. Capillaries in close proximity to arteries or veins were designated as residing in either an arterial (AE) or a venous (VE) environment respectively, and the retinal layer in which each capillary was located was also noted. The thickness of the BM was then measured on an image analyser based two dimensional morphometric analysis system.
RESULTS: In both diabetics and controls the AE capillaries had consistently thicker BMs than the VE capillaries. The BMs of both AE and VE capillaries from diabetics were thicker than those of capillaries in the corresponding retinal layer from the normal rats (p < or = 0.005). Also, in normal AE and VE capillaries and diabetic AE capillaries the BM in the nerve fibre layer (NFL) was thicker than that in either the inner (IPL) or outer (OPL) plexiform layers (p < or = 0.001). However, in diabetic VE capillaries the BMs of capillaries in the NFL were thicker than those of capillaries in the IPL (p < or = 0.05) which, in turn, had thicker BMs than capillaries in the OPL (p < or = 0.005).
CONCLUSIONS: The variation in the extent of capillary BM thickening between different retinal layers within AE and VE environments may be related to differences in levels of oxygen tension and oxidative stress in the retina around arteries compared with that around veins.