662 resultados para PLASTIC DEFORMATION
Resumo:
The depths of cracks in desiccating plastic concrete are estimated by considering the effects of the suction (negative pore pressure) associated with desiccation and applying five failure models derived from fracture, theories combined with theories drawn from geotechnical engineering under the assumption that plastic concrete is a frictional particulate material. The estimated crack depths vary with the depth of desiccation, the suction profile, and a small number of material parameters that depend on the model adopted and are comparatively easy to estimate accurately. Four of the models predict excessively large crack depths. The fifth, however, predicts shallower crack depths that increase with the age of the concrete and are consistent with those of analogous desiccation cracks in coal mine tailings. It thus offers a relatively robust method of estimating the depth of desiccation cracks. Confirmation of this with data for plastic concrete is clearly desirable but not possible at present.
Resumo:
Solvation. pressure due to adsorption of fluids in porous materials is the cause of elastic deformation of an adsorbent, which is accessible to direct experimental measurements. Such a deformation contributes to the Helmholtz free energy of the whole adsorbent-adsorbate system due to accumulation of compression or tension energy by the solid. It means that in the general case the solid has to be considered as not solely a source of the external potential field for the fluid confined in the pore volume, but also as thermodynamically nonmert component of the solid-fluid system. We present analysis of nitrogen adsorption isotherms and heat of adsorption in slit graphitic pores accounting for the adsorption deformation by means of nonlocal density functional theory. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A modified Volume-of-Fluid (VOF) numerical method is used to predict the dynamics of a liquid drop of a low viscosity dilute polymer solution, forming in air from a circular nozzle. Viscoelastic effects are represented using an Oldroyd-B model. Predicted drop shapes are compared with experimental observations. The main features, including the timing of the shape evolution and the bead-on-a-string effect, are well reproduced by the simulations. The results confirm published conclusions of the third author, that the deformation is effectively Newtonian until near the time of Newtonian pinch-off and that the elastic stress becomes large in the pinch region due to the higher extensional flow there.
Resumo:
The dynamics of drop formation and pinch-off have been investigated for a series of low viscosity elastic fluids possessing similar shear viscosities, but differing substantially in elastic properties. On initial approach to the pinch region, the viscoelastic fluids all exhibit the same global necking behavior that is observed for a Newtonian fluid of equivalent shear viscosity. For these low viscosity dilute polymer solutions, inertial and capillary forces form the dominant balance in this potential flow regime, with the viscous force being negligible. The approach to the pinch point, which corresponds to the point of rupture for a Newtonian fluid, is extremely rapid in such solutions, with the sudden increase in curvature producing very large extension rates at this location. In this region the polymer molecules are significantly extended, causing a localized increase in the elastic stresses, which grow to balance the capillary pressure. This prevents the necked fluid from breaking off, as would occur in the equivalent Newtonian fluid. Alternatively, a cylindrical filament forms in which elastic stresses and capillary pressure balance, and the radius decreases exponentially with time. A (0+1)-dimensional finitely extensible nonlinear elastic dumbbell theory incorporating inertial, capillary, and elastic stresses is able to capture the basic features of the experimental observations. Before the critical "pinch time" t(p), an inertial-capillary balance leads to the expected 2/3-power scaling of the minimum radius with time: R-min similar to(t(p)-t)(2/3). However, the diverging deformation rate results in large molecular deformations and rapid crossover to an elastocapillary balance for times t>t(p). In this region, the filament radius decreases exponentially with time R-min similar to exp[(t(p)-t)/lambda(1)], where lambda(1) is the characteristic time constant of the polymer molecules. Measurements of the relaxation times of polyethylene oxide solutions of varying concentrations and molecular weights obtained from high speed imaging of the rate of change of filament radius are significantly higher than the relaxation times estimated from Rouse-Zimm theory, even though the solutions are within the dilute concentration region as determined using intrinsic viscosity measurements. The effective relaxation times exhibit the expected scaling with molecular weight but with an additional dependence on the concentration of the polymer in solution. This is consistent with the expectation that the polymer molecules are in fact highly extended during the approach to the pinch region (i.e., prior to the elastocapillary filament thinning regime) and subsequently as the filament is formed they are further extended by filament stretching at a constant rate until full extension of the polymer coil is achieved. In this highly extended state, intermolecular interactions become significant, producing relaxation times far above theoretical predictions for dilute polymer solutions under equilibrium conditions. (C) 2006 American Institute of Physics
Resumo:
The metamorphic belt of the Western Alps was subjected to widespread extensional tectonism at the end of the Eocene (ca. 45-35 Ma). Extension was accommodated by hinterland-directed movements along gently inclined extensional shear zones, which facilitated rapid exhumation of high-pressure and ultra-high-pressure rocks. This deformation resulted in a normal metamorphic sequence. Extension in the inner parts of the Western Alps was coeval with shortening at the front of the belt (foreland-directed thrusts), which took place during decompression, and emplaced higher grade metamorphic units over lower grade metamorphic rocks, thus forming an inverse metamorphic sequence. Two mechanisms for this extensional episode are discussed: (1) collapse of an overthickened lithosphere, and (2) internal readjustments within the orogenic wedge due to subduction channel dynamics. We favour the latter mechanism because it can account for the development of the observed inverse and normal metamorphic sequences along foreland-directed thrusts and hinterland-directed detachments, respectively. This hypothesis is supported by published structural, metamorphic and geochronological data from four geological transects through the Western Alps. This study also emphasizes the importance of post-shearing deformation (e.g. horizontal buckling versus vertical flattening), which can modify the distribution of hinterland- and foreland-directed shear zones in orogenic belts. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We have developed a way to represent Mohr-Coulomb failure within a mantle-convection fluid dynamics code. We use a viscous model of deformation with an orthotropic viscoplasticity (a different viscosity is used for pure shear to that used for simple shear) to define a prefered plane for slip to occur given the local stress field. The simple-shear viscosity and the deformation can then be iterated to ensure that the yield criterion is always satisfied. We again assume the Boussinesq approximation, neglecting any effect of dilatancy on the stress field. An additional criterion is required to ensure that deformation occurs along the plane aligned with maximum shear strain-rate rather than the perpendicular plane, which is formally equivalent in any symmetric formulation. We also allow for strain-weakening of the material. The material can remember both the accumulated failure history and the direction of failure. We have included this capacity in a Lagrangian-integration-point finite element code and show a number of examples of extension and compression of a crustal block with a Mohr-Coulomb failure criterion. The formulation itself is general and applies to 2- and 3-dimensional problems.
Resumo:
Strain localisation is a widespread phenomenon often observed in shear and compressive loading of geomaterials, for example, the fault gouge. It is believed that the main mechanisms of strain localisation are strain softening and mismatch between dilatancy and pressure sensitivity. Observations show that gouge deformation is accompanied by considerable rotations of grains. In our previous work as a model for gouge material, we proposed a continuum description for an assembly of particles of equal radius in which the particle rotation is treated as an independent degree of freedom. We showed that there exist critical values of the model parameters for which the displacement gradient exhibits a pronounced localisation at the mid-surface layers of the fault, even in the absence of inelasticity. Here, we generalise the model to the case of finite deformations characteristic for the gouge deformation. We derive objective constitutive relationships relating the Jaumann rates of stress and moment stress to the relative strain and curvature rates, respectively. The model suggests that the pattern of localisation remains the same as in the linear case. However, the presence of the Jaumann terms leads to the emergence of non-zero normal stresses acting along and perpendicular to the shear layer (with zero hydrostatic pressure), and localised along the mid-line of the gouge; these stress components are absent in the linear model of simple shear. These additional normal stresses, albeit small, cause a change in the direction in which the maximal normal stresses act and in which en-echelon fracturing is formed.
Resumo:
A 1.2(height)×125(depth)×500(length) micro-slot was engraved along a fiber Bragg grating by chemically assisted femtosecond laser processing. By filling epoxy and UV-curing, waveguide with plastic-core and silica-cladding was created, presenting high thermal responding coefficient of 211pm/°C.