938 resultados para PHOTON EMISSION
Resumo:
Tungsten coil atomic emission spectrometry is an ideal technique for field applications because of its simplicity, low cost, low power requirement, and independence from cooling systems. A new, portable, compact design is reported here. The tungsten coil is extracted from an inexpensive 24 V, 250 W commercial light bulb. The coil is housed in a small, aluminum cell. The emission signal exits from a small aperture in the cell, while the bulk of the blackbody emission from the tungsten coil is blocked. The resulting spectra exhibit extremely low background signals. The atomization cell, a single lens, and a hand-held charge coupled device (CCD) spectrometer are fixed on a 1 x 6 x 30 cm ceramic base. The resulting system is robust and easily transported. A programmable, miniature 400 W solid-state constant current power supply controls the temperature of the coil. Fifteen elements are determined with the system (Ba, Cs, Li, Rb, Cr, Sr, Eu, Yb, Mn, Fe, Cu, Mg, V, Al, and Ga). The precision ranges from 4.3% to 8.4% relative standard deviation for repetitive measurements of the same solution. Detection limits are in the 0.04 to 1500 mu g/L range. Accuracy is tested using standard reference materials for polluted water, peach leaves, and tomato leaves. For those elements present above the detection limit, recoveries range from 72% to 147%.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Head dipping (HD) is a behavioral pattern considered to have a risk assessment or an exploratory role and is used as a complementary parameter to evaluate anxiety in experimental animals. Since rats with electrolytic lesion in the area of the median raphe nucleus displayed high frequencies of HD in a previous study, the present investigation was undertaken to confirm this observation and to determine its anxiety-related origin. HD episodes were counted in adult male Wistar rats (270-350 g) with electrolytic lesion (N = 11) and sham-lesioned controls (N = 12). When HD was measured for 60 min on an elevated open platform, lesioned rats emitted 13 times more HD than controls (264.7 ± 93.3 vs 20.3 ± 7.6 episodes), with the difference being statistically significant (P < 0.05). HD counts during 10-min sessions held 7, 14, 21, 27, and 63 days after lesion showed significantly higher means (range: 28.14 ± 5.38 to 62.85 ± 9.48) compared to sham-lesioned controls (range: 7.37 ± 1.13 to 8.5 ± 1.45). Normal rats stepped down into their home cages when the vertical distance between them and the cage was short (16 cm), and the step-down latencies increased with increasing depths (36.7 ± 7.92 to 185.87 ± 35.44 s). Lesioned rats showed a similar behavior when facing the shortest depth, but had a significantly increased number (23.28 ± 2.35 episodes) and latency (300 ± 0.00 s) of HD compared to normal rats (9.25 ± 1.37 episodes and 185.87 ± 35.44 s) when facing the greatest depth (30 cm). This suggests that HD may be a depth-measuring behavior related to risk assessment.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Two-photon correlation of the light pulse emitted from a sonoluminescence bubble is discussed. It is shown that several important features of the mechanism of light emission, such as the time scale and the shape of the emission region, could be obtained from Hanbury-Brown-Twiss interferometry. We also argue that such a measurement may serve to reject one of the two currently suggested emission mechanisms, i.e., the thermal process versus the dynamical Casimir effect.
Resumo:
In this work the relationship between CO2 emissions and the soil properties of a tropical Brazilian bare soil was investigated. Carbon dioxide emissions were measured on three different days at different soil temperature and the soil moisture conditions, and the soil properties were investigated at the same points that emissions were measured. The soil CO2 emissions were correlated to carbon content, cation exchange capacity and free iron content at the 65 points studied in an area of 100 x 100 m located in southern Brazil. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
We investigated the IR absorption spectrum of (CH3OH)-C-13 around the frequency of the 10R(20) CO2 laser line. We found two absorption lines which can be excited by 10R(20) and studied the FIR laser emissions excited by this pump line using a waveguide CO2 laser of 300 MHz tunability: We report two new FIR laser lines of large offset, not previously observed due to their weakness and closeness to other stronger lines. We measured the frequencies of five FIR laser lines for the first time by an accurate heterodyne technique and present the complete assignments of the IR-FIR laser systems relative to this pump line. Furthermore we present new frequency values for two FIR laser lines whose frequencies had been previously wrongly measured. Copyright (C) 1997 Elsevier B.V. Ltd.
Resumo:
In this letter, the authors propose that photoluminescence emission in CaTiO3 is affected not only by disorder in the lattice former but also by structural disorder in the lattice modifier. Structural disorder was evaluated by Ti, Ca K-edge x-ray absorption near-edge structure experiments and by photoluminescence emission. The preedge feature of the Ca K edge was related to the intensity of photoluminescence emission. The results of the preedge feature of the Ca K-edge x-ray absorption near-edge structure confirm the presence of different Ca coordination numbers, namely, Ca-O-11 and Ca-O-12. (c) 2007 American Institute of Physics.
Resumo:
Bright blue upconversion emission by thulium ions in PbGeO3-PbF2-CdF2 glass triply doped with Nd3+-Tm3+-Yb3+ under diode laser excitation around 800 nm is reported. The results revealed that the Nd3+/Tm3+/Yb3+-codoped sample generated ten times more 475 nm blue upconversion fluorescence than the Yb3+-sensitized Tm3+-doped one, under the same excitation power. The upconversion process also showed a strong dependence upon the Yb3+ concentration. The results also indicated that the neodymium ions played a major role in the upconversion process by transfering the 800 nm excitation to thulium ions. The population of the Tm3+ ions (1)G(4) emitting level was accomplished through a multiion interaction involving ground-state absorption of pump photons around 800 nm by the Nd3+(I-4(9/2)-->H-2(9/2), F-4(5/2)) and Tm3+(H-3(6)-->F-3(4)) ions followed by energy-transfer processes involving the Nd3+-Yb3+(F-4(3/2), F-2(7/2)-->I-4(11/2), F-2(5/2)) and Yb3+-Tm3+(F-2(5/2), F-3(4)-->F-2(7/2), (1)G(4)) pairs. (C) 2003 American Institute of Physics.
Resumo:
We analyze the production and detection of the Higgs boson in the next generation of linear e+e-colliders operating in the egamma mode. In particular, we study the production mechanism e+gamma --> egammagamma --> e + H, where one photon is generated via the laser backscattering mechanism, while the other is radiated via the usual bremsstrahlung process. We show that this is the most important mechanism for Higgs boson production in a 500 GeV egamma collider for M(H) greater than or similar to 140 GeV. We also study the signals and backgrounds for detection of the Higgs boson in the different decay channels bbBAR, W+W-, and ZZ, and suggest kinematical cuts to improve the signature of an intermediate-mass Higgs boson.
Resumo:
We study the associated production of Z and standard model Higgs bosons in high energy gamma gamma collisions with the photons originating from Compton laser backscattering. According to our results, within the framework of the standard model, this process will give rise only to very few events for a yearly integrated luminosity of 10 fb(-1), even at very high energies.
Resumo:
Infrared-to-visible upconversion emission enhancement through thermal effects in Yb3+-sensitized Pr3+-doped fluoroindate glasses excited at 1.064 mu m is investigated. A twentyfold increase in the 485 nm blue emission intensity as the sample temperature was varied from 20 to 260 degrees C was observed. The visible upconversion fluorescence enhancement is ascribed to the temperature dependent multiphonon-assisted anti-Stokes excitation of the ytterbium sensitizer and excited-state absorption of the praseodymium acceptor. A model based upon conventional rate equations considering a temperature dependent effective absorption cross section for the F-2(7/2)-->F-2(5/2) transition of the Yb3+ and (1)G(4)-->P-3(0) excited-state absorption of the Pr3+, agrees very well with the experimental results. (C) 2000 American Institute of Physics. [S0021-8979(00)08209-8].
Resumo:
Red, green, and blue emission through frequency upconversion and energy-transfer processes in tellurite glasses doped with Tm3+ and Er3+ excited at 1.064 mum is investigated. The Tm3+/Er3+-codoped samples produced intense upconversion emission signals at around 480, 530, 550 and 660 nm. The 480 nm blue emission was originated from the (1)G(4)-->H-3(6) transition of the Tm3+ ions excited by a multiphoton stepwise phonon-assisted excited-state absorption process. The 5 30, 5 50 nm green and 660 mn red upconversion luminescences were identified as originating from the H-2(11/2), S-4(3/2) --> I-4(15/2) and F-4(9/2) --> I-4(15/2) transitions of the Er3+ ions, respectively, populated via efficient cross-relaxation processes and excited-state absorption. White light generation employing a single infrared excitation source is also examined. (C) 2003 Elsevier B.V. (USA). All rights reserved.
Resumo:
Antimony glasses based on the composition Sb2O3-SbPO4 were prepared and characterized. The samples present high refractive index, good transmission from 380 to 2000 nm, and high thermal stability. The nonlinear refractive index, n(2), of the samples was studied using the optical Kerr shutter technique at 800 nm. The third-order correlation signals between pump and probe pulses indicate ultrafast response (<100 fs) for all compositions. Enhancement of n(2) was observed by adding lead oxide to the Sb2O3-SbPO4 composition. Large values of n(2)approximate to10(-14) cm(2)/W and negligible two-photon absorption coefficients (smaller than 0.01 cm/GW) were determined for all samples. The glass compositions studied present appropriate figure-of-merit for all-optical switching applications. (C) 2005 American Institute of Physics.