918 resultados para PATTERN-RECOGNITION MOLECULES
Resumo:
Central nervous system space-occupying lesions with clear-cell features encompass a nosologically heterogeneous array, ranging from reactive histiocytic proliferations to neuroepithelial or meningothelial neoplasms of various grades and to metastases. In the face of such differential diagnostic breadth, recognizing cytoplasmic lucency as part of the morphological spectrum of some low grade gliomas will directly have an impact on patient care. We describe a prevailing clear-cell change in an epileptogenic left temporal pleomorphic xanthoastrocytoma surgically resected from a 36-year-old man. Mostly subarachnoid and focally calcified, the tumor was composed of fascicles of moderately atypical spindle cells with optically lucent cytoplasm that tended to intermingle with a desmoplastic mesh of reticulin fibers. Immunohistochemically, coexpression of S100 protein, vimentin, GFAP, and CD34 was noted. Conversely, neither punctate staining for EMA nor positivity for CD68 was seen. Mitotic activity was absent, and the MIB1 labeling index was 2-3% on average. Diastase-sensitive PAS-positive granula indicated clear-cell change to proceed from glycogen storage. Electron microscopy showed tumor cell cytoplasm to be largely obliterated by non-lysosomal-bound pools of glycogen, while hardly any fat vacuole was encountered. Neither ependymal-derived organelles nor annular lamellae suggesting oligodendroglial differentiation were detected. The latter differential diagnosis was further invalidated by lack of codeletion of chromosomal regions 1p36 and 19q13 on molecular genetic testing. By significantly interfering with pattern recognition as an implicit approach in histopathology, clear-cell change in pleomorphic xanthoastrocytoma is likely to suspend its status as a "classic", and to prompt more deductive differential diagnostic strategies to exclude look-alikes, especially clear-cell ependymoma and oligodendroglioma.
Resumo:
Pentraxins are a family of evolutionarily conserved multifunctional pattern-recognition proteins characterized by a cyclic multimeric structure. Based on the primary structure of the subunit, the pentraxins are divided into two groups: short pentraxins and long pentraxins. C-reactive protein (CRP) and serum amyloid P-component (SAP) are the two short pentraxins. The prototype protein of the long pentraxin group is pentraxin 3 (PTX3). CRP and SAP are produced primarily in the liver in response to IL-6, while PTX3 is produced by a variety of tissues and cells and in particular by innate immunity cells in response to proinflammatory signals and Toll-like receptor (TLR) engagement. PTX3 interacts with several ligands, including growth factors, extracellular matrix components and selected pathogens, playing a role in complement activation and facilitating pathogen recognition by phagocytes, acting as a predecessor of antibodies. In addition, PTX3 is essential in female fertility by acting as a nodal point for the assembly of the cumulus oophorus hyaluronan-rich extracellular matrix. Here we will concisely review the general properties of PTX3 in the context of the pentraxin superfamily and discuss recent data suggesting that PTX3 plays a cardiovascular protective effect. PTX3 may represent a new marker in vascular pathology which correlates with the risk of developing vascular events.
Resumo:
The pattern-recognition molecule M-ficolin is synthesized by monocytes and neutrophils. M-ficolin activates the complement system in a manner similar to mannan-binding lectin (MBL), but little is known about its role in host defense. Neonates are highly vulnerable to bacterial sepsis, in particular, due to their decreased phagocytic function.
Resumo:
Cardiovascular disease is a complex disorder involving multiple pathophysiological processes, several of which involve activation of toll-like receptors (TLRs) of the innate immune system. As sentinels of innate immunity TLRs are nonclonally germline-encoded molecular pattern recognition receptors that recognize exogenous as well as tissue-derived molecular dangers signals promoting inflammation. In addition to their expression in immune cells, TLRs are found in other tissues and cell types including cardiomyocytes, endothelial and vascular smooth muscle cells. TLRs are differentially regulated in various cell types by several cardiovascular risk factors such as hypercholesterolemia, hyperlipidemia, and hyperglycemia and may represent a key mechanism linking chronic inflammation, cardiovascular disease progression, and activation of the immune system. Modulation of TLR signaling by specific TLR agonists or antagonists, alone or in combination, may be a useful therapeutic approach to treat various cardiovascular inflammatory conditions such as atherosclerosis, peripheral arterial disease, secondary microvascular complications of diabetes, autoimmune disease, and ischemia reperfusion injury. In this paper we discuss recent developments and current evidence for the role of TLR in cardiovascular disease as well as the therapeutic potential of various compounds on inhibition of TLR-mediated inflammatory responses.