878 resultados para Owls - Ecology - Victoria
Resumo:
Lakes in Arctic and subarctic regions display extreme levels of seasonal variation in light, temperature and ice cover. Comparatively little is known regarding the effects of such seasonal variation on the diet and resource use of fish species inhabiting these systems. Variation in the diet of European whitefish Coregonus lavaretus (L.) during periods of ice cover in this region is often regarded as 'common knowledge'; however, this aspect of the species' ecology has not been examined empirically. Here, we outline the differences in invertebrate community structure, fish activity, and resource use of monomorphic whitefish populations between summer (August-September) and winter (February-March) in three subarctic lakes in Finnish Lapland. Benthic macroinvertebrate densities did not exhibit measurable differences between summer and winter. Zooplankton diversity and abundance, and activity levels of all fish species (measured as catch per unit effort) were lower in winter. The summer diet of C. lavaretus was typical of a generalist utilising a variety of prey sources. In winter, its dietary niche was significantly reduced, and the diet was dominated by chironomid larvae in all study sites. Pelagic productivity decreases during winter, and fish species inhabiting these systems are therefore restricted to feeding on benthic prey. Sampling time has strong effect on our understanding of resource utilisation by whitefish in subarctic lakes and should be taken into account in future studies of these systems. © 2012 John Wiley & Sons A/S.
Resumo:
Although widespread, the ecology of the whiskered bat, Myotis mystacinus in Europe remains poorly understood. Ireland is positioned at the most western extreme of this species' range. To ascertain the ecology of M. mystacinus at its geographic range extreme, the roosting behaviour, home range and habitat use of females in a maternity roost in Ireland was investigated by radio-tracking. M. mystacinus were active in a diversity of habitats: namely, mixed woodland, riparian vegetation, arable land and rough grassland. However, only mixed woodland and riparian habitats were selected as core foraging areas. This is in contrast to a previous study from Britain where only pasture was utilised but is in agreement with data from Slovakia, where woodland was also selected, whilst riparian areas were also utilised by this species in Germany. A high degree of overlap in the foraging areas of individuals was observed. A total of seven roosts were utilised by tracked bats and roost switching behaviour was observed. We discuss our contrasting results in respect to range limitations, regional variability in landscape structure and the composition of bat communities. The present results have implications for the conservation of M. mystacinus within Ireland and other parts of its range, highlighting the need for range wide ecological studies. Regional variability in the ecology of bats related to landscape factors is an important consideration for bat conservation and therefore must be incorporated into future management plans. (C) 2012 Deutsche Gesellschaft fur Saugetierkunde. Published by Elsevier GmbH. All rights reserved.
Resumo:
Antarctic ice-free areas contain lakes and ponds that have interesting limnological features and are of wide global significance as early warning indicators of climatic and environmental change. However, most linmological and paleolimnological studies in continental Antarctica are limited to certain regions. There are several ice-free areas in Victoria Land that have not yet been studied well. There is therefore a need to extend limnological studies in space and time to understand how different geological and climatic features affect the composition and biological activity of freshwater communities. With the aim of contributing to a better limnological characterization of Victoria Land, this paper reports data on sedimentary pigments (used to identify the main algal taxa) obtained through a methodology that is more sensitive and selective than that of previous studies. Analyses were extended to 48 water bodies in ice-free areas with differing lithology, latitude, and altitude, and with different morphometry and physical, chemical, and biological characteristics in order to identify environmental factors affecting the distribution and composition of freshwater autotrophic communities. A wider knowledge of lakes in a limnologically important region of Antarctica was obtained. Cyanophyta was found to be the most important algal group, followed by Chlorophyta and Bacillariophyta, whereas latitude and altitude are the main factors affecting pigment distribution.
Resumo:
Biotic communities in Antarctic terrestrial ecosystems are relatively simple and often lack higher trophic levels (e. g. predators); thus, it is often assumed that species' distributions are mainly affected by abiotic factors such as climatic conditions, which change with increasing latitude, altitude and/or distance from the coast. However, it is becoming increasingly apparent that factors other than geographical gradients affect the distribution of organisms with low dispersal capability such as the terrestrial arthropods. In Victoria Land (East Antarctica) the distribution of springtail (Collembola) and mite (Acari) species vary at scales that range from a few square centimetres to regional and continental. Different species show different scales of variation that relate to factors such as local geological and glaciological history, and biotic interactions, but only weakly with latitudinal/altitudinal gradients. Here, we review the relevant literature and outline more appropriate sampling designs as well as suitable modelling techniques (e. g. linear mixed models and eigenvector mapping), that will more adequately address and identify the range of factors responsible for the distribution of terrestrial arthropods in Antarctica.
Resumo:
Although soil algae are among the main primary producers in most terrestrial ecosystems of continental Antarctica, there are very few quantitative studies on their relative proportion in the main algal groups and on how their distribution is affected by biotic and abiotic factors. Such knowledge is essential for understanding the functioning of Antarctic terrestrial ecosystems. We therefore analyzed biological soil crusts from northern Victoria Land to determine their pH, electrical conductivity (EC) water content (W), total and organic C (TC and TOC) and total N (TN) contents, and the presence and abundance of photosynthetic pigments. In particular, the latter were tested as proxies for biomass and coarse-resolution community structure. Soil samples were collected from five sites with known soil algal communities and the distribution of pigments was shown to reflect differences in the relative proportions of Chlorophyta, Cyanophyta and Bacillariophyta in these sites. Multivariate and univariate models strongly indicated that almost all soil variables (EC, W, TOC and TN) were important environmental correlates of pigment distribution. However, a significant amount of variation is independent of these soil variables and may be ascribed to local variability such as changes in microclimate at varying spatial and temporal scales. There are at least five possible sources of local variation: pigment preservation, temporal variations in water availability, temporal and spatial interactions among environmental and biological components, the local-scale patchiness of organism distribution, and biotic interactions. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Concentrations of major ions, silicate and nutrients (total N and P) were measured in samples of surface water from 28 lakes in ice-free areas of northern Victoria Land (East Antarctica). Sixteen lakes were sampled during austral summers 2001/02, 2003/04, 2004/05 and 2005/06 to assess temporal variation in water chemistry. Although samples showed a wide range in ion concentrations, their composition mainly reflected that of seawater. In general, as the distance from the sea increased, the input of elements from the marine environment (through aerosols and seabirds) decreased and there was an increase in nitrate and sulfate concentrations. Antarctic lakes lack outflows and during the austral summer the melting and/or ablation of ice cover, water evaporation and leaching processes in dry soils determine a progressive increase in water ion concentrations. During the five-year monitoring survey, no statistically significant variation in the water chemistry were detected, except for a slight (hardly significant) increase in TN concentrations. However, Canonical Correspondence Analysis (CCA) indicated that other factors besides distance from the sea, the presence of nesting seabirds, the sampling time and percentage of ice cover affect the composition of water in Antarctic cold desert environments.
Resumo:
This study aimed to: (1) assess differences between two quantitative sampling methods of soil microarthropods (visual census vs. stone washing) in ice-free areas located along a latitudinal gradient (from 72 degrees 37'S to 74 degrees 42'S) in northern Victoria Land (Antarctica); (2) furnish preliminary results on the abundance and diversity of mites and springtails in the studied areas. Visual census yielded reliable density estimates for adult collembolans and larger prostigmatic mites but did not detect small species. The study updates the distribution of several mites, including the southernmost record of an Oribatida species at global scale. Species composition was correlated with latitude but the uneven abundance distribution and local high beta-diversity probably reflect habitat fragmentation and population isolation. Under this circumstance nested sampling design should be usefully employed. Priorities and suitable methods for studying terrestrial microarthropod communities in continental Antarctica are discussed.
Resumo:
This study examines the influence of social ecological risks within the domains of parenting, family environment, and community in the prediction of educational outcomes for 770 adolescents (49% boys, 51% girls, M = 13.6 years, SD = 2.0) living in a setting of protracted political conflict, specifically working class areas of Belfast, Northern Ireland. Controlling for religious community, age, and gender, youths' lower academic achievement was associated with family environments characterized by high conflict and low cohesion. School behaviour problems were related to greater exposure to community violence, or sectarian and nonsectarian antisocial behaviour. Youths' expectations about educational attainment were undermined by conflict in the family environment and antisocial behaviour in the community, as well as parenting low in warmth and behavioural control. Findings underscore the importance of considering family and community contributions to youths' educational outcomes. Suggestions regarding targeted interventions toward promoting resilience are discussed, such as assessing both child and family functioning, developing multidimensional interventions for parents, and building community partnerships, among others.
Resumo:
In this collection of 65 short poems, Roberta Quance exemplifies the range, vitality and mysticism of work by one of Spain’s foremost, if controversial, contemporary female poets, drawing on the contents of a number of Spanish collections.
Resumo:
Invasion ecology urgently requires predictive methodologies that can forecast the ecological impacts of existing, emerging and potential invasive species. We argue that many ecologically damaging invaders are characterised by their more efficient use of resources. Consequently, comparison of the classical ‘functional response’ (relationship between resource use and availability) between invasive and trophically analogous native species may allow prediction of invader ecological impact. We review the utility of species trait comparisons and the history and context of the use of functional responses in invasion ecology, then present our framework for the use of comparative functional responses. We show that functional response analyses, by describing the resource use of species over a range of resource availabilities, avoids many pitfalls of ‘snapshot’ assessments of resource use. Our framework demonstrates how comparisons of invader and native functional responses, within and between Type II and III functional responses, allow testing of the likely population-level outcomes of invasions for affected species. Furthermore, we describe how recent studies support the predictive capacity of this method; for example, the invasive ‘bloody red shrimp’ Hemimysis anomala shows higher Type II functional responses than native mysids and this corroborates, and could have predicted, actual invader impacts in the field. The comparative functional response method can also be used to examine differences in the impact of two or more invaders, two or more populations of the same invader, and the abiotic (e.g. temperature) and biotic (e.g. parasitism) context-dependencies of invader impacts. Our framework may also address the previous lack of rigour in testing major hypotheses in invasion ecology, such as the ‘enemy release’ and ‘biotic resistance’ hypotheses, as our approach explicitly considers demographic consequences for impacted resources, such as native and invasive prey species. We also identify potential challenges in the application of comparative functional responses in invasion ecology. These include incorporation of numerical responses, multiple predator effects and trait-mediated indirect interactions, replacement versus non-replacement study designs and the inclusion of functional responses in risk assessment frameworks. In future, the generation of sufficient case studies for a meta-analysis could test the overall hypothesis that comparative functional responses can indeed predict invasive species impacts.
Resumo:
Body mass measures provide a tantalizing tool for explaining both variation in emergent community-level patterns and as a mechanistic basis for fundamental processes such as metabolism, consumption and competition. The unification of body mass, abundance and food web (ecological network) structure in community ecology is an effective way to explore future scenarios of environmental change. However, constraints over the availability of data against which to validate model predictions limit the application of size-based approaches. Here, I explore issues over the use of body size for predicting interaction strengths and hence the dynamics of natural ecosystems. The advantages, disadvantages, opportunities and limitations of such approaches are explored. © 2011 The Author. Journal of Animal Ecology © 2011 British Ecological Society.
Resumo:
Drawing upon recent reworkings of world systems theory and Marx’s concept of metabolic rift, this paper attempts to ground early nineteenth-century Ireland more clearly within these metanarratives, which take the historical-ecological dynamics of the development of capitalism as their point of departure. In order to unravel the socio-spatial complexities of Irish agricultural production throughout this time, attention must be given to the prevalence of customary legal tenure, institutions of communal governance, and their interaction with the colonial apparatus, as an essential feature of Ireland’s historical geography often neglected by famine scholars. This spatially differentiated legacy of communality, embedded within a country-wide system of colonial rent, and burgeoning capitalist system of global trade, gave rise to profound regional differentiations and ecological contradictions, which became central to the distribution of distress during the Great Famine (1845-1852). Contrary to accounts which depict it as a case of discrete transition from feudalism to capitalism, Ireland’s pre-famine ecology must be understood through an analysis which emphasises these socio-spatial complexities. Consequently, this structure must be conceptualised as one in which communality, colonialism, and capitalism interact dynamically, and in varying stages of development and devolution, according to space and time.
Resumo:
Microbial habitats that contain an excess of carbohydrate in the form of sugar are widespread in the microbial biosphere. Depending on the type of sugar, prevailing water activity and other substances present, sugar-rich environments can be highly dynamic or relatively stable, osmotically stressful, and/or destabilizing for macromolecular systems, and can thereby strongly impact the microbial ecology. Here, we review the microbiology of different high-sugar habitats, including their microbial diversity and physicochemical parameters, which act to impact microbial community assembly and constrain the ecosystem. Saturated sugar beet juice and floral nectar are used as case studies to explore the differences between the microbial ecologies of low and higher water-activity habitats respectively. Nectar is a paradigm of an open, dynamic and biodiverse habitat populated by many microbial taxa, often yeasts and bacteria such as, amongst many others, Metschnikowia spp. and Acinetobacter spp., respectively. By contrast, thick juice is a relatively stable, species-poor habitat and is typically dominated by a single, xerotolerant bacterium (Tetragenococcus halophilus). A number of high-sugar habitats contain chaotropic solutes (e.g. ethyl acetate, phenols, ethanol, fructose and glycerol) and hydrophobic stressors (e.g. ethyl octanoate, hexane, octanol and isoamyl acetate), all of which can induce chaotropicity-mediated stresses that inhibit or prevent multiplication of microbes. Additionally, temperature, pH, nutrition, microbial dispersion and habitat history can determine or constrain the microbiology of high-sugar milieux. Findings are discussed in relation to a number of unanswered scientific questions.