987 resultados para Organic distributed feedback laser
Resumo:
Laser-assisted chemical vapour deposition (LCVD) has been extensively studied in the last two decades. A vast range of applications encompass various areas such as microelectronics, micromechanics, microelectromechanics and integrated optics, and a variety of metals, semiconductors and insulators have been grown by LCVD. In this article, we review briefly the LCVD process and present two case studies of thin film deposition related to laser thermal excitation (e.g., boron carbide) and non-thermal excitation (e.g., CrO(2)) of the gas phase.
Resumo:
This work reports on the synthesis of chromium oxide thin films prepared by photodissociation of Cr(CO)(6) in an oxidizing atmosphere, using a pulsed UV laser (KrF, lambda = 248 nm). The experimental conditions, which should enable the synthesis of CrO2, are discussed and results on the deposition of CrxOy films on Al2O3 (0001) substrates are presented.
Resumo:
This work reports on the synthesis of chromium (III, IV) oxides films by KrF laser-assisted CVD. Films were deposited onto sapphire substrates at room temperature by the photodissociation of Cr(CO)(6) in dynamic atmospheres containing oxygen and argon. A study of the processing parameters has shown that partial pressure ratio Of O-2 to Cr(CO)(6) and laser fluence are the prominent parameters that have to be accurately controlled in order to co-deposit both the crystalline oxide phases. Films consistent with such a two-phase system were synthesised for a laser fluence of 75 mJ cm(-2) and a partial pressure ratio of about 1. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In the management of solid waste, pollutants over a wide range are released with different routes of exposure for workers. The potential for synergism among the pollutants raises concerns about potential adverse health effects, and there are still many uncertainties involved in exposure assessment. In this study, conventional (culture-based) and molecular real-time polymerase chain reaction (RTPCR) methodologies were used to assess fungal air contamination in a waste-sorting plant which focused on the presence of three potential pathogenic/toxigenic fungal species: Aspergillus flavus, A. fumigatus, and Stachybotrys chartarum. In addition, microbial volatile organic compounds (MVOC) were measured by photoionization detection. For all analysis, samplings were performed at five different workstations inside the facilities and also outdoors as a reference. Penicillium sp. were the most common species found at all plant locations. Pathogenic/toxigenic species (A. fumigatus and S. chartarum) were detected at two different workstations by RTPCR but not by culture-based techniques. MVOC concentration indoors ranged between 0 and 8.9 ppm (average 5.3 ± 3.16 ppm). Our results illustrated the advantage of combining both conventional and molecular methodologies in fungal exposure assessment. Together with MVOC analyses in indoor air, data obtained allow for a more precise evaluation of potential health risks associated with bioaerosol exposure. Consequently, with this knowledge, strategies may be developed for effective protection of the workers.
Resumo:
The production of MVOC by fungi has been taken into account especially from the viewpoint of indoor pollution with microorganisms but the relevance of fungal metabolites in working environments has not been sufficiently studied. The purpose of this study was to assess exposure to MVOCs in a waste-handling unit. It was used Multirae equipment (RAE Systems) to measured MVOCs concentration with a 10.6 eV lamps. The measurements were done near workers nose and during the normal activities. All measurements were done continuously and had the duration of 5 minutes at least. It was consider the higher value obtained in each measurement. In addition, for knowing fungi contamination, five air samples of 50 litres were collected through impaction method at 140 L/minute, at one meter tall, on to malt extract agar with the antibiotic chloramphenicol (MEA). MVOCs results range between 4.7 ppm and 8.9 ppm in the 6 locations consider. These results are eight times higher than normally obtained in indoor settings. Considering fungi results, two species were identified in air, being the genera Penicillium found in all the samples in uncountable colonies and Rhizopus only in one sample (40 UFC/m3). These fungi are known as MVOCs producers, namely terpenoids, ketones, alcohols and others. Until now, there has been no evidence that MVOCs are toxicologically relevant, but further epidemiological research is necessary to elucidate their role on human’s health, particularly in occupational settings where microbiological contamination is common. Additionally, further research should concentrate on quantitative analyses of specific MVOCs.
Resumo:
In the present work we investigate the ageing of acid cleaned femtosecond laser textured < 100 > silicon surfaces. Changes in the surface structure and chemistry were analysed by Rutherford backscattering spectrometry (RBS) and X-ray photoelectron spectroscopy (XPS), in order to explain the variation with time of the water contact angles of the laser textured surfaces. It is shown that highly hydrophobic silicon surfaces are obtained immediately after laser texturing and cleaning with acid solutions (water contact angle >120 degrees). However these surfaces are not stable and ageing leads to a decrease of the water contact angle which reaches a value of 80 degrees. XPS analysis of the surfaces shows that the growth of the native oxide layer is most probably responsible for this behavior. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The advances made in channel-capacity codes, such as turbo codes and low-density parity-check (LDPC) codes, have played a major role in the emerging distributed source coding paradigm. LDPC codes can be easily adapted to new source coding strategies due to their natural representation as bipartite graphs and the use of quasi-optimal decoding algorithms, such as belief propagation. This paper tackles a relevant scenario in distributedvideo coding: lossy source coding when multiple side information (SI) hypotheses are available at the decoder, each one correlated with the source according to different correlation noise channels. Thus, it is proposed to exploit multiple SI hypotheses through an efficient joint decoding technique withmultiple LDPC syndrome decoders that exchange information to obtain coding efficiency improvements. At the decoder side, the multiple SI hypotheses are created with motion compensated frame interpolation and fused together in a novel iterative LDPC based Slepian-Wolf decoding algorithm. With the creation of multiple SI hypotheses and the proposed decoding algorithm, bitrate savings up to 8.0% are obtained for similar decoded quality.
Resumo:
This study explores a large set of OC and EC measurements in PM(10) and PM(2.5) aerosol samples, undertaken with a long term constant analytical methodology, to evaluate the capability of the OC/EC minimum ratio to represent the ratio between the OC and EC aerosol components resulting from fossil fuel combustion (OC(ff)/EC(ff)). The data set covers a wide geographical area in Europe, but with a particular focus upon Portugal, Spain and the United Kingdom, and includes a great variety of sites: urban (background, kerbside and tunnel), industrial, rural and remote. The highest minimum ratios were found in samples from remote and rural sites. Urban background sites have shown spatially and temporally consistent minimum ratios, of around 1.0 for PM(10) and 0.7 for PM(2.5).The consistency of results has suggested that the method could be used as a tool to derive the ratio between OC and EC from fossil fuel combustion and consequently to differentiate OC from primary and secondary sources. To explore this capability, OC and EC measurements were performed in a busy roadway tunnel in central Lisbon. The OC/EC ratio, which reflected the composition of vehicle combustion emissions, was in the range of 03-0.4. Ratios of OC/EC in roadside increment air (roadside minus urban background) in Birmingham, UK also lie within the range 03-0.4. Additional measurements were performed under heavy traffic conditions at two double kerbside sites located in the centre of Lisbon and Madrid. The OC/EC minimum ratios observed at both sites were found to be between those of the tunnel and those of urban background air, suggesting that minimum values commonly obtained for this parameter in open urban atmospheres over-predict the direct emissions of OC(ff) from road transport. Possible reasons for this discrepancy are explored. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Tuberculosis (TB) is a worldwide infectious disease that has shown over time extremely high mortality levels. The urgent need to develop new antitubercular drugs is due to the increasing rate of appearance of multi-drug resistant strains to the commonly used drugs, and the longer durations of therapy and recovery, particularly in immuno-compromised patients. The major goal of the present study is the exploration of data from different families of compounds through the use of a variety of machine learning techniques so that robust QSAR-based models can be developed to further guide in the quest for new potent anti-TB compounds. Eight QSAR models were built using various types of descriptors (from ADRIANA.Code and Dragon software) with two publicly available structurally diverse data sets, including recent data deposited in PubChem. QSAR methodologies used Random Forests and Associative Neural Networks. Predictions for the external evaluation sets obtained accuracies in the range of 0.76-0.88 (for active/inactive classifications) and Q(2)=0.66-0.89 for regressions. Models developed in this study can be used to estimate the anti-TB activity of drug candidates at early stages of drug development (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This chapter addresses the resolution of dynamic scheduling by means of meta-heuristic and multi-agent systems. Scheduling is an important aspect of automation in manufacturing systems. Several contributions have been proposed, but the problem is far from being solved satisfactorily, especially if scheduling concerns real world applications. The proposed multi-agent scheduling system assumes the existence of several resource agents (which are decision-making entities based on meta-heuristics) distributed inside the manufacturing system that interact with other agents in order to obtain optimal or near-optimal global performances.
Resumo:
In competitive electricity markets with deep concerns at the efficiency level, demand response programs gain considerable significance. In the same way, distributed generation has gained increasing importance in the operation and planning of power systems. Grid operators and utilities are taking new initiatives, recognizing the value of demand response and of distributed generation for grid reliability and for the enhancement of organized spot market´s efficiency. Grid operators and utilities become able to act in both energy and reserve components of electricity markets. This paper proposes a methodology for a joint dispatch of demand response and distributed generation to provide energy and reserve by a virtual power player that operates a distribution network. The proposed method has been computationally implemented and its application is illustrated in this paper using a 32 bus distribution network with 32 medium voltage consumers.
Resumo:
Distributed Energy Resources (DER) scheduling in smart grids presents a new challenge to system operators. The increase of new resources, such as storage systems and demand response programs, results in additional computational efforts for optimization problems. On the other hand, since natural resources, such as wind and sun, can only be precisely forecasted with small anticipation, short-term scheduling is especially relevant requiring a very good performance on large dimension problems. Traditional techniques such as Mixed-Integer Non-Linear Programming (MINLP) do not cope well with large scale problems. This type of problems can be appropriately addressed by metaheuristics approaches. This paper proposes a new methodology called Signaled Particle Swarm Optimization (SiPSO) to address the energy resources management problem in the scope of smart grids, with intensive use of DER. The proposed methodology’s performance is illustrated by a case study with 99 distributed generators, 208 loads, and 27 storage units. The results are compared with those obtained in other methodologies, namely MINLP, Genetic Algorithm, original Particle Swarm Optimization (PSO), Evolutionary PSO, and New PSO. SiPSO performance is superior to the other tested PSO variants, demonstrating its adequacy to solve large dimension problems which require a decision in a short period of time.
Resumo:
The large increase of distributed energy resources, including distributed generation, storage systems and demand response, especially in distribution networks, makes the management of the available resources a more complex and crucial process. With wind based generation gaining relevance, in terms of the generation mix, the fact that wind forecasting accuracy rapidly drops with the increase of the forecast anticipation time requires to undertake short-term and very short-term re-scheduling so the final implemented solution enables the lowest possible operation costs. This paper proposes a methodology for energy resource scheduling in smart grids, considering day ahead, hour ahead and five minutes ahead scheduling. The short-term scheduling, undertaken five minutes ahead, takes advantage of the high accuracy of the very-short term wind forecasting providing the user with more efficient scheduling solutions. The proposed method uses a Genetic Algorithm based approach for optimization that is able to cope with the hard execution time constraint of short-term scheduling. Realistic power system simulation, based on PSCAD , is used to validate the obtained solutions. The paper includes a case study with a 33 bus distribution network with high penetration of distributed energy resources implemented in PSCAD .
Resumo:
Sustainable development concerns are being addressed with increasing attention, in general, and in the scope of power industry, in particular. The use of distributed generation (DG), mainly based on renewable sources, has been seen as an interesting approach to this problem. However, the increasing of DG in power systems raises some complex technical and economic issues. This paper presents ViProd, a simulation tool that allows modeling and simulating DG operation and participation in electricity markets. This paper mainly focuses on the operation of Virtual Power Producers (VPP) which are producers’ aggregations, being these producers mainly of DG type. The paper presents several reserve management strategies implemented in the scope of ViProd and the results of a case study, based on real data.
Resumo:
The future scenarios for operation of smart grids are likely to include a large diversity of players, of different types and sizes. With control and decision making being decentralized over the network, intelligence should also be decentralized so that every player is able to play in the market environment. In the new context, aggregator players, enabling medium, small, and even micro size players to act in a competitive environment, will be very relevant. Virtual Power Players (VPP) and single players must optimize their energy resource management in order to accomplish their goals. This is relatively easy to larger players, with financial means to have access to adequate decision support tools, to support decision making concerning their optimal resource schedule. However, the smaller players have difficulties in accessing this kind of tools. So, it is required that these smaller players can be offered alternative methods to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), intended to support smaller players’ resource scheduling. The used methodology uses a training set that is built using the energy resource scheduling solutions obtained with a reference optimization methodology, a mixed-integer non-linear programming (MINLP) in this case. The trained network is able to achieve good schedule results requiring modest computational means.