918 resultados para Optimal Sampling Time


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In natural environments, marine biotas are exposed to a variety of simultaneously acting abiotic factors. Among these, temperature, irradiance and CO2 availability are major factors influencing the physiological performance of marine macroalgae. To test whether elevated levels of CO2 may remediate the otherwise reduced performance of uncalcified seaweeds under the influence of other stressful abiotic factors, we performed multifactorial experiments with the red alga Chondrus crispus from Helgoland (North Sea) with two levels of CO2, temperature and irradiance: low and high pCO2 levels were tested in combination with either (1) optimal and low irradiances or (2) optimal and sub-lethal high temperatures for growth. Performance of C. crispus was evaluated as biomass increase and relative growth rates (RGR), gross photosynthesis and pigment content. Acclimations of growth and photosynthesis were measured after 4 and 8 days. Acclimation time was crucial for elucidating single or combined CO2 effects on growth and photosynthesis. Signifi- cant CO2 effects became evident only in combination with either elevated temperature or reduced irradiance. Growth and photosynthesis had divergent patterns: RGR and biomass significantly increased only under a combination of high pCO2 and elevated temperature; gross photosynthesis was significantly reduced under high pCO2 conditions at low irradiance. Pigment content varied in response to irradiance and temperature, but was independent of pCO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The "MARECHIARA-phytoplankton" dataset contains phytoplankton data collected in the ongoing time-series at Stn MC ( 40°48.5' N, 14°15' E) in the Gulf of Naples. This dataset spans over the period 1984-2006 and contains data of phytoplankton species composition and abundance. Phytoplankton sampling was regularly conducted from January 1984 till July 1991 and in 1995-2006. Sampling was interrupted from August 1991 till January 1995. The sampling frequency was fortnightly till 1991 and weekly since 1995. Phytoplankton samples were collected at 0.5 m depth using Niskin bottles and immediately fixed with formaldehyde (0.8-1.6% final concentration) for species identification and counts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents a probabilistic method for vehicle detection and tracking through the analysis of monocular images obtained from a vehicle-mounted camera. The method is designed to address the main shortcomings of traditional particle filtering approaches, namely Bayesian methods based on importance sampling, for use in traffic environments. These methods do not scale well when the dimensionality of the feature space grows, which creates significant limitations when tracking multiple objects. Alternatively, the proposed method is based on a Markov chain Monte Carlo (MCMC) approach, which allows efficient sampling of the feature space. The method involves important contributions in both the motion and the observation models of the tracker. Indeed, as opposed to particle filter-based tracking methods in the literature, which typically resort to observation models based on appearance or template matching, in this study a likelihood model that combines appearance analysis with information from motion parallax is introduced. Regarding the motion model, a new interaction treatment is defined based on Markov random fields (MRF) that allows for the handling of possible inter-dependencies in vehicle trajectories. As for vehicle detection, the method relies on a supervised classification stage using support vector machines (SVM). The contribution in this field is twofold. First, a new descriptor based on the analysis of gradient orientations in concentric rectangles is dened. This descriptor involves a much smaller feature space compared to traditional descriptors, which are too costly for real-time applications. Second, a new vehicle image database is generated to train the SVM and made public. The proposed vehicle detection and tracking method is proven to outperform existing methods and to successfully handle challenging situations in the test sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an automatic modulation classifier for electronic warfare applications. It is a pattern recognition modulation classifier based on statistical features of the phase and instantaneous frequency. This classifier runs in a real time operation mode with sampling rates in excess of 1 Gsample/s. The hardware platform for this application is a Field Programmable Gate Array (FPGA). This AMC is subsidiary of a digital channelised receiver also implemented in the same platform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The demand of video contents has rapidly increased in the past years as a result of the wide deployment of IPTV and the variety of services offered by the network operators. One of the services that has especially become attractive to the customers is real-time video on demand (VoD) because it offers an immediate streaming of a large variety of video contents. The price that the operators have to pay for this convenience is the increased traffic in the networks, which are becoming more congested due to the higher demand for VoD contents and the increased quality of the videos. As a solution, in this paper we propose a hierarchical network system for VoD content delivery in managed networks, which implements redistribution algorithm and a redirection strategy for optimal content distribution within the network core and optimal streaming to the clients. The system monitors the state of the network and the behavior of the users to estimate the demand for the content items and to take the right decision on the appropriate number of replicas and their best positions in the network. The system's objectives are to distribute replicas of the content items in the network in a way that the most demanded contents will have replicas closer to the clients so that it will optimize the network utilization and will improve the users' experience. It also balances the load between the servers concentrating the traffic to the edges of the network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of barometric altimetry is to some extent a limiting factor on safety, predictability and efficiency of aircraft operations, and reduces the potential of the trajectory based operations capabilities. However, geometric altimetry could be used to improve all of these aspects. Nowadays aircraft altitude is estimated by applying the International Standard Atmosphere which differs from real altitude. At different temperatures for an assigned barometric altitude, aerodynamic forces are different and this has a direct relationship with time, fuel consumption and range of the flight. The study explores the feasibility of using sensors providing geometric reference altitude, in particular, to supply capabilities for the optimization of vertical profiles and also, their impact on the vertical Air Traffic Management separation assurance processes. One of the aims of the thesis is to assess if geometric altitude fulfils the aeronautical requirements through existing sensors. Also the thesis will elaborate on the advantages of geometric altitude over the barometric altitude in terms of efficiency for vertical navigation. The evidence that geometric altitude is the best choice to improve the efficiency in vertical profile and aircraft capacity by reducing vertical uncertainties will also be shown. In this paper, an atmospheric study is presented, as well as the impact of temperature deviation from International Standard Atmosphere model is analyzed in order to obtain relationship between geometric and barometric altitude. Furthermore, an aircraft model to study aircraft vertical profile is provided to analyse trajectories based on geometric altitudes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A disruption predictor based on support vector machines (SVM) has been developed to be used in JET. The training process uses thousands of discharges and, therefore, high performance computing has been necessary to obtain the models. To this respect, several models have been generated with data from different JET campaigns. In addition, various kernels (mainly linear and RBF) and parameters have been tested. The main objective of this work has been the implementation of the predictor model under real-time constraints. A “C-code” software application has been developed to simulate the real-time behavior of the predictor. The application reads the signals from the JET database and simulates the real-time data processing, in particular, the specific data hold method to be developed when reading data from the JET ATM real time network. The simulator is fully configurable by means of text files to select models, signal thresholds, sampling rates, etc. Results with data between campaigns C23and C28 will be shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The analysis of complex nonlinear systems is often carried out using simpler piecewise linear representations of them. A principled and practical technique is proposed to linearize and evaluate arbitrary continuous nonlinear functions using polygonal (continuous piecewise linear) models under the L1 norm. A thorough error analysis is developed to guide an optimal design of two kinds of polygonal approximations in the asymptotic case of a large budget of evaluation subintervals N. The method allows the user to obtain the level of linearization (N) for a target approximation error and vice versa. It is suitable for, but not limited to, an efficient implementation in modern Graphics Processing Units (GPUs), allowing real-time performance of computationally demanding applications. The quality and efficiency of the technique has been measured in detail on two nonlinear functions that are widely used in many areas of scientific computing and are expensive to evaluate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, a method for vehicle tracking through video analysis based on Markov chain Monte Carlo (MCMC) particle filtering with metropolis sampling is proposed. The method handles multiple targets with low computational requirements and is, therefore, ideally suited for advanced-driver assistance systems that involve real-time operation. The method exploits the removed perspective domain given by inverse perspective mapping (IPM) to define a fast and efficient likelihood model. Additionally, the method encompasses an interaction model using Markov Random Fields (MRF) that allows treatment of dependencies between the motions of targets. The proposed method is tested in highway sequences and compared to state-of-the-art methods for vehicle tracking, i.e., independent target tracking with Kalman filtering (KF) and joint tracking with particle filtering. The results showed fewer tracking failures using the proposed method.