995 resultados para Ophthalmology.
Resumo:
The pathogenesis of diabetic retinopathy is multifactorial, and a range of hyperglycemia-linked pathways have been implicated in the initiation and progression of this condition. All cells in the retina are affected by the diabetic milieu, and in view of such disease and tissue complexity, it is unlikely that any single process is solely responsible for retinal pathophysiology. Nevertheless, establishing causal mechanisms remains an important research goal. This review concentrates on the formation of advanced glycation end products (AGEs) and the role they play in diabetic retinopathy. Perspective is provided on advanced glycation in the retina, the impact that this process has on retinal cell function, and how it relates to other pathogenic pathways. Emphasis is also placed the modulatory role of the receptor for AGEs (RAGE) and how its activation could evoke retinal inflammatory disease. Further research is needed to achieve a clear understanding of the cellular and molecular processes that underpin diabetic retinopathy's initiation and progression. Such advances in basic mechanisms may lead to effective treatments that can prevent progression of retinopathy from the point of the diagnosis of diabetes to sight-threatening proliferative diabetic retinopathy (PDR) and diabetic macular edema (DME).
Outgrowth Endothelial Cells: Characterization and Their Potential for Reversing Ischemic Retinopathy
Resumo:
Purpose. Endothelial progenitor cells (EPCs) have potential for promoting vascular repair and revascularization of ischemic retina. However, the highly heterogeneous nature of these cells causes confusion when assessing their biological functions. The purpose of this study was to provide a comprehensive comparison between the two main EPC subtypes, early EPCs (eEPCs) and outgrowth endothelial cells (OECs), and to establish the potential of OECs as a novel cell therapy for ischemic retinopathy.
Methods. Two types of human blood-derived EPCs were isolated and compared using immunophenotyping and multiple in vitro functional assays to assess interaction with retinal capillary endothelial cells and angiogenic activity. OECs were delivered intravitreally in a mouse model of ischemic retinopathy, and flat mounted retinas were examined using confocal microscopy.
Results. These data indicate that eEPCs are hematopoietic cells with minimal proliferative capacity that lack tube-forming capacity. By contrast, OECs are committed to an endothelial lineage and have significant proliferative and de novo tubulogenic potential. Furthermore, only OECs are able to closely interact with endothelial cells through adherens and tight junctions and to integrate into retinal vascular networks in vitro. The authors subsequently chose OECs to test a novel cell therapy approach for ischemic retinopathy. Using a murine model of retinal ischemia, they demonstrated that OECs directly incorporate into the resident vasculature, significantly decreasing avascular areas, concomitantly increasing normovascular areas, and preventing pathologic preretinal neovascularization.
Conclusions. As a distinct EPC population, OECs have potential as therapeutic cells to vascularize the ischemic retina.
Resumo:
Purpose: This study aimed to evaluate the effects of endostatin on tight junction (TJ) integrity in retinal microvascular endothelial cells (RMECs) in vitro and in vivo. Moreover, it was hypothesized that endostatin-induced occludin upregulation regulated VEGF(165)-mediated increases in endothelial cell permeability and involved activation of the MAPK signaling cascade. Endostatin is a 20-kDa fragment of collagen XVIII that has been shown to be efficacious in the eye by preventing retinal neovascularization. Endostatin is a specific inhibitor of endothelial cell proliferation, migration, and angiogenesis and has been reported to reverse VEGF-mediated increases in vasopermeability and to promote integrity of the blood-retinal barrier (BRB). In order to determine the mechanism of endostatin action on BRB integrity, we have examined the effects of endostatin on a number of intracellular pathways implicated in endothelial cell physiology. Methods: C57/Bl6 mice were injected with VEGF(165) and/or endostatin, and the distribution of occludin staining was determined using retinal flatmounts. Western blot analysis of RMECs treated with VEGF(165) and/or endostatin was used to determine changes in occludin expression and p38 MAPK and extracellular regulated kinase (ERK1/ERK2 MAPK) activation, while FD-4 flux across the RMEC monolayer was used to determine changes in paracellular permeability. Results: Endostatin prevented the discontinuous pattern of occludin staining observed at the retinal blood vessels of mice administered an intraocular injection of VEGF(165). It was shown that endostatin activated p38 MAPK 5 min after addition to RMECs and continued to do so for approximately 30 min. Endostatin was also shown to activate ERK1/ERK2 5 min after addition and continued to do so, albeit with less potency, up to and including 15 min after addition. Inhibition of p38 MAPK and ERK1/ERK2 prevented endostatin's ability to upregulate levels of occludin expression. Inhibition of these key signaling molecules was shown to prevent endostatin's ability to protect against VEGF(165)- mediated increases in paracellular permeability in vitro. However, it appears that p38 MAPK may play a more important role in VEGF-mediated permeability, as inhibition of ERK1/ERK2 will not prevent VEGF(165)- mediated permeability compared with control ( untreated) cells or cells treated with both a p38 MAPK inhibitor and VEGF(165). Conclusions: Occludin is important for the maintenance of tight junction integrity in vivo. In a p38 MAPK and ERK1/ERK2 dependent manner, endostatin was shown to upregulate the levels of expression of the tight junction protein occludin. Inhibition of these key MAPK components may prevent endostatin's ability to decrease VEGF(165)-induced paracellular permeability.
Resumo:
PURPOSE. Diabetic patients who also have retinitis pigmentosa (RP) appear to have fewer and less severe retinal microvascular lesions. Diabetic retinopathy may be linked to increased inner retinal hypoxia, with the possibility that this is exacerbated by oxygen usage during the dark-adaptation response. Therefore, patients with RP with depleted rod photoreceptors may encounter proportionately less retinal hypoxia, and, when diabetes is also present, there may be fewer retinopathic lesions. This hypothesis was tested in rhodopsin knockout mice (Rho(-/-)) as an RP model in which the diabetic milieu is superimposed. The study was designed to investigate whether degeneration of the outer retina has any impact on hypoxia, to examine diabetes-related retinal gene expression responses, and to assess lesions of diabetic retinopathy.
Resumo:
Chronic use of chloroquine has been shown to induce numerous pathophysiological defects in the retina. This drug has the ability to alter pH of intracellular compartments and lysosomal function of the retinal pigment epithelium (RPE) and retinal neurons may constitute the basis of chloroquine retinopathy. The aim of the current study was to investigate pathogenic alterations in retinal cells continuously exposed to chloroquine using appropriate in vivo and in vitro models.
Resumo:
The formation of advanced glycation end products (AGEs) is a key pathophysiological event with links to a range of important human diseases. It is now clear that AGEs may act as mediators, not only of diabetic complications(1 2) but also of widespread age related pathology such as Alzheimer's disease,(3) decreased skin elasticity,(4) (5) male erectile dysfunction,(6) (7) pulmonary fibrosis,(8) and atherosclerosis.(9 10) Since many cells and tissues of the eye are profoundly influenced by both diabetes and ageing, it is fitting that advanced glycation is now receiving considerable attention as a possible modulator in important visual disorders. An increasing number of reports confirm widespread AGE accumulation at sites of known ocular pathology and demonstrate how these products mediate crosslinking of long lived molecules in the eye. Such studies also underscore the putative pathophysiological role of advanced glycation in ocular cell dysfunction in vitro and in vivo.
Resumo:
BACKGROUND: Although microaneurysms are a clinicopathological hallmark of diabetic retinopathy, there have been few ultrastructural studies of these important lesions. As a result, knowledge of the mechanisms involved in the pathogenesis of microaneurysms remains fragmentary. This study provides histological and ultrastructural evidence of various stages in microaneurysm formation within the retinal vasculature. METHODS: The eyes of three type II diabetic patients, obtained within 24 hours of death, were studied by the trypsin digest technique. Eyes from two further type II diabetics were fixed in 2.5% glutaraldehyde within 12 hours of death and processed for electron microscopy. RESULTS: In the trypsin digest preparations, small saccular and fusiform microaneurysms were observed in the peripheral retinal. In the central retina, the microaneurysms ranged in morphology from thin walled, cellular forms to dense, acellular, hyalinised forms. Ultrastructurally, four distinct groups of microaneurysm were observed. Type I showed an extensive accumulation of polymorphonuclear cells into the lumen. The endothelium remained intact, although pericytes were invariably absent. Type II microaneurysms were typified by large numbers of red blood cells (RBCs) in the lumen. Endothelial cells and pericytes were completely absent. The type III microaneurysm was also non-perfused and contained aggregates of irregularly shaped RBC profiles and RBC breakdown products. Recanalisation by new vessels into the occluded lumen was observed in one microaneurysm. Type IV microaneurysms were almost or completely sclerosed, with extensive fibrosis and lipid infiltration into the lumen and basement membrane wall. CONCLUSION: This investigation describes several distinctive stages in the formation of microaneurysms during diabetic retinopathy. With reference to the pathogenesis of retinal microaneurysms, the interaction of various cell types is discussed and the significance of vascular cell death and localised hypertensive events highlighted.
Resumo:
Retinal ischaemic disorders such as diabetic retinopathy and retinal vein occlusion are common. The hypoxia-related stimuli from oxygen-deprived neural and glial networks can drive expression of growth factors and cytokines which induce leakage from the surviving vasculature and/or pre-retinal and papillary neovascularisation. If left untreated, retinal vascular stasis, hypoxia or ischaemia can lead to macular oedema or fibro-vascular scar formation which are associated with severe visual impairment, and even blindness. Current therapies for ischaemic retinopathies include laser photocoagulation, injection of corticosteroids or VEGF-antibodies and vitreoretinal surgery, however they carry significant side effects. As an alternative approach, we propose that if reparative intra-retinal angiogenesis can be harnessed at the appropriate stage, ischaemia could be contained or reversed. This review provides evidence that reperfusion of ischaemic retina and suppression of sight-threatening sequelae is possible in both experimental and clinical settings. In particular, there is emphasis on the clinical potential for endothelial progenitor cells (EPCs) to promote vascular repair and reversal of ischaemic injury in various tissues including retina. Gathering evidence from an extensive published literature, we outline the molecular and phenotypic nature of EPCs, how they are altered in disease and provide a rationale for harnessing the vascular reparative properties of various cell sub-types. When some of the remaining questions surrounding the clinical use of EPCs are addressed, they may provide an exciting new therapeutic option for treating ischaemic retinopathies. (C) 2011 Elsevier Ltd. All rights reserved.