774 resultados para Observers
Resumo:
The cyclic change in hormonal profiles between the two main phases of the menstrual cycle mediate shifts in mate preference. Males who advertise social dominance are preferred over other men by females in the follicular phase of the cycle. The present study explored assignment of high or low status resources to dominant looking men by females in either phase of the menstrual cycle. Thirteen females who reported that they were free from any kind of hormonal intervention and experienced a 28 day cycle, were invited to participate in a mock job negotiation scenario. Participants were asked to assign either a minimum, low, high or maximum social status job package to a series of male 'employees' that were previously rated to look either dominant or non-dominant. The results showed that during the follicular phase of the cycle participants assigned dominant looking men more high status job resources than the non-dominant looking men. However, during the luteal phase the participants assigned low status resources to the non-dominant looking men. Females are not merely passive observers of male status cues but actively manipulate the environment to assign status. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Many aspects of vision have been investigated in developmental dyslexia. Some research suggests deficits in vergence control (e.g. Buzzelli, 1991, Optom. Vision Sci. 68, 842±846), although ability to control vergence across saccades has not yet been investigated. We have explored this question indirectly using Enright's (1996 Vision Res. 36, 307±312.) sequential stereopsis task. The task requires observers to set two adjacent targets (whose textures cannot be resolved simultaneously if either is fixated) to appear equi-distant. Enright has argued that sequential stereopsis stereoacuity thresholds offer an indication of vergence control across saccades. We report two experiments using a total of 17 dyslexic and 18 control adults. Performance was measured on a sequential stereopsis task and an ordinary `simultaneous' stereopsis task. No significant differences between groups were found. However, whereas practice of the sequential task lowered control group thresholds on the simultaneous task, for the dyslexic group it significantly raised thresholds, suggesting that visual fatigue is especially important in investigations of visual functions in dyslexia. Although the small samples used limit conclusions at this stage, the main sequential stereopsis results suggest that, if Enright is correct, dyslexic adults can show normal vergence control across saccades.
Resumo:
The effects of attentional modulation on activity within the human visual cortex were investigated using magnetoencephalography. Chromatic sinusoidal stimuli were used to evoke activity from the occipital cortex, with attention directed either toward or away from the stimulus using a bar-orientation judgment task. For five observers, global magnetic field power was plotted as a function of time from stimulus onset. The major peak of each function occurred at about 120 ms latency and was well modeled by a current dipole near the calcarine sulcus. Independent component analysis (ICA) on the non-averaged data for each observer also revealed one component of calcarine origin, the location of which matched that of the dipolar source determined from the averaged data. For two observers, ICA revealed a second component near the parieto-occipital sulcus. Although no effects of attention were evident using standard averaging procedures, time-varying spectral analyses of single trials revealed that the main effect of attention was to alter the level of oscillatory activity. Most notably, a sustained increase in alpha-band (7-12 Hz) activity of both calcarine and parieto-occipital origin was evident. In addition, calcarine activity in the range of 13-21 Hz was enhanced, while calcarine activity in the range of 5-6 Hz was reduced. Our results are consistent with the hypothesis that attentional modulation affects neural processing within the calcarine and parieto-occipital cortex by altering the amplitude of alpha-band activity and other natural brain rhythms. © 2003 Elsevier Inc. All rights reserved.
Resumo:
Edges are key points of information in visual scenes. One important class of models supposes that edges correspond to the steepest parts of the luminance profile, implying that they can be found as peaks and troughs in the response of a gradient (1st derivative) filter, or as zero-crossings in the 2nd derivative (ZCs). We tested those ideas using a stimulus that has no local peaks of gradient and no ZCs, at any scale. The stimulus profile is analogous to the Mach ramp, but it is the luminance gradient (not the absolute luminance) that increases as a linear ramp between two plateaux; the luminance profile is a blurred triangle-wave. For all image-blurs tested, observers marked edges at or close to the corner points in the gradient profile, even though these were not gradient maxima. These Mach edges correspond to peaks and troughs in the 3rd derivative. Thus Mach edges are inconsistent with many standard edge-detection schemes, but are nicely predicted by a recent model that finds edge points with a 2-stage sequence of 1st then 2nd derivative operators, each followed by a half-wave rectifier.
Resumo:
Visual detection performance (d') is usually an accelerating function of stimulus contrast, which could imply a smooth, threshold-like nonlinearity in the sensory response. Alternatively, Pelli (1985 Journal of the Optical Society of America A 2 1508 - 1532) developed the 'uncertainty model' in which responses were linear with contrast, but the observer was uncertain about which of many noisy channels contained the signal. Such internal uncertainty effectively adds noise to weak signals, and predicts the nonlinear psychometric function. We re-examined these ideas by plotting psychometric functions (as z-scores) for two observers (SAW, PRM) with high precision. The task was to detect a single, vertical, blurred line at the fixation point, or identify its polarity (light vs dark). Detection of a known polarity was nearly linear for SAW but very nonlinear for PRM. Randomly interleaving light and dark trials reduced performance and rendered it non-linear for SAW, but had little effect for PRM. This occurred for both single-interval and 2AFC procedures. The whole pattern of results was well predicted by our Monte Carlo simulation of Pelli's model, with only two free parameters. SAW (highly practised) had very low uncertainty. PRM (with little prior practice) had much greater uncertainty, resulting in lower contrast sensitivity, nonlinear performance, and no effect of external (polarity) uncertainty. For SAW, identification was about v2 better than detection, implying statistically independent channels for stimuli of opposite polarity, rather than an opponent (light - dark) channel. These findings strongly suggest that noise and uncertainty, rather than sensory nonlinearity, limit visual detection.
Resumo:
Edge detection is crucial in visual processing. Previous computational and psychophysical models have often used peaks in the gradient or zero-crossings in the 2nd derivative to signal edges. We tested these approaches using a stimulus that has no such features. Its luminance profile was a triangle wave, blurred by a rectangular function. Subjects marked the position and polarity of perceived edges. For all blur widths tested, observers marked edges at or near 3rd derivative maxima, even though these were not 1st derivative maxima or 2nd derivative zero-crossings, at any scale. These results are predicted by a new nonlinear model based on 3rd derivative filtering. As a critical test, we added a ramp of variable slope to the blurred triangle-wave luminance profile. The ramp has no effect on the (linear) 2nd or higher derivatives, but the nonlinear model predicts a shift from seeing two edges to seeing one edge as the ramp gradient increases. Results of two experiments confirmed such a shift, thus supporting the new model. [Supported by the Engineering and Physical Sciences Research Council].
Resumo:
Observers perceive sinusoidal shading patterns as being due to sinusoidally corrugated surfaces, and perceive surface peaks to be offset from luminance maxima by between zero and 1/4 wavelength. This offset varies with grating orientation. Physically, the shading profile of a sinusoidal surface will be approximately sinusoidal, with the same spatial frequency as the surface, only when: (A) it is lit suitably obliquely by a point source, or (B) the light source is diffuse and hemispherical--the 'dark is deep' rule applies. For A, surface peaks will be offset by 1/4 wavelength from the luminance maxima; for B, this offset will be zero. As the sum of two same-frequency sinusoids with different phases is a sinusoid of intermediate phase, our results suggest that observers assume a mixture of two light sources whose relative strength varies with grating orientation. The perceived surface offsets imply that gratings close to horizontal are taken to be lit by a point source; those close to vertical by a diffuse source. [Supported by EPSRC grants to AJS and MAG].
Resumo:
Edges are key points of information in visual scenes. One important class of models supposes that edges correspond to the steepest parts of the luminance profile, implying that they can be found as peaks and troughs in the response of a gradient (first-derivative) filter, or as zero-crossings (ZCs) in the second-derivative. A variety of multi-scale models are based on this idea. We tested this approach by devising a stimulus that has no local peaks of gradient and no ZCs, at any scale. Our stimulus profile is analogous to the classic Mach-band stimulus, but it is the local luminance gradient (not the absolute luminance) that increases as a linear ramp between two plateaux. The luminance profile is a smoothed triangle wave and is obtained by integrating the gradient profile. Subjects used a cursor to mark the position and polarity of perceived edges. For all the ramp-widths tested, observers marked edges at or close to the corner points in the gradient profile, even though these were not gradient maxima. These new Mach edges correspond to peaks and troughs in the third-derivative. They are analogous to Mach bands - light and dark bars are seen where there are no luminance peaks but there are peaks in the second derivative. Here, peaks in the third derivative were seen as light-to-dark edges, troughs as dark-to-light edges. Thus Mach edges are inconsistent with many standard edge detectors, but are nicely predicted by a new model that uses a (nonlinear) third-derivative operator to find edge points.
Resumo:
Luminance changes within a scene are ambiguous; they can indicate reflectance changes, shadows, or shading due to surface undulations. How does vision distinguish between these possibilities? When a surface painted with an albedo texture is shaded, the change in local mean luminance (LM) is accompanied by a similar modulation of the local luminance amplitude (AM) of the texture. This relationship does not necessarily hold for reflectance changes or for shading of a relief texture. Here we concentrate on the role of AM in shape-from-shading. Observers were presented with a noise texture onto which sinusoidal LM and AM signals were superimposed, and were asked to indicate which of two marked locations was closer to them. Shape-from-shading was enhanced when LM and AM co-varied (in-phase), and was disrupted when they were out-of-phase. The perceptual differences between cue types (in-phase vs out-of-phase) were enhanced when the two cues were present at different orientations within a single image. Similar results were found with a haptic matching task. We conclude that vision can use AM to disambiguate luminance changes. LM and AM have a positive relationship for rendered, undulating, albedo textures, and we assess the degree to which this relationship holds in natural images. [Supported by EPSRC grants to AJS and MAG].
Resumo:
The pattern of illumination on an undulating surface can be used to infer its 3-D form (shape from shading). But the recovery of shape would be invalid if the shading actually arose from reflectance variation. When a corrugated surface is painted with an albedo texture, the variation in local mean luminance (LM) due to shading is accompanied by a similar modulation in texture amplitude (AM). This is not so for reflectance variation, nor for roughly textured surfaces. We used a haptic matching technique to show that modulations of texture amplitude play a role in the interpretation of shape from shading. Observers were shown plaid stimuli comprising LM and AM combined in-phase (LM+AM) on one oblique and in anti-phase (LM-AM) on the other. Stimuli were presented via a modified ReachIN workstation allowing the co-registration of visual and haptic stimuli. In the first experiment, observers were asked to adjust the phase of a haptic surface, which had the same orientation as the LM+AM combination, until its peak in depth aligned with the visually perceived peak. The resulting alignments were consistent with the use of a lighting-from-above prior. In the second experiment, observers were asked to adjust the amplitude of the haptic surface to match that of the visually perceived surface. Observers chose relatively large amplitude settings when the haptic surface was oriented and phase-aligned with the LM+AM cue. When the haptic surface was aligned with the LM-AM cue, amplitude settings were close to zero. Thus the LM/AM phase relation is a significant visual depth cue, and is used to discriminate between shading and reflectance variations. [Supported by the Engineering and Physical Sciences Research Council, EPSRC].
Resumo:
When a textured surface is modulated in depth and illuminated, the level of illumination varies across the surface, producing coarse-scale luminance modulations (LM) and amplitude modulation (AM) of the fine-scale texture. If the surface has an albedo texture (reflectance variation) then the LM and AM components are always in-phase, but if the surface has a relief texture the phase relation between LM and AM varies with the direction and nature of the illuminant. We showed observers sinusoidal luminance and amplitude modulations of a binary noise texture, in various phase relationships, in a paired-comparisons design. In the first experiment, the combinations under test were presented in different temporal intervals. Observers indicated which interval contained the more depthy stimulus. LM and AM in-phase were seen as more depthy than LM alone which was in turn more depthy than LM and AM in anti-phase, but the differences were weak. In the second experiment the combinations under test were presented in a single interval on opposite obliques of a plaid pattern. Observers were asked to indicate the more depthy oblique. Observers produced the same depth rankings as before, but now the effects were more robust and significant. Intermediate LM/AM phase relationships were also tested: phase differences less than 90 deg were seen as more depthy than LM-only, while those greater than 90 deg were seen as less depthy. We conjecture that the visual system construes phase offsets between LM and AM as indicating relief texture and thus perceives these combinations as depthy even when their phase relationship is other than zero. However, when different LM/AM pairs are combined in a plaid, the signals on the obliques are unlikely to indicate corrugations of the same texture, and in this case the out-of-phase pairing is seen as flat. [Supported by the Engineering and Physical Sciences Research Council (EPSRC)].
Resumo:
Contrast sensitivity is better with two eyes than one. The standard view is that thresholds are about 1.4 (v2) times better with two eyes, and that this arises from monocular responses that, near threshold, are proportional to the square of contrast, followed by binocular summation of the two monocular signals. However, estimates of the threshold ratio in the literature vary from about 1.2 to 1.9, and many early studies had methodological weaknesses. We collected extensive new data, and applied a general model of binocular summation to interpret the threshold ratio. We used horizontal gratings (0.25 - 4 cycles deg-1) flickering sinusoidally (1 - 16 Hz), presented to one or both eyes through frame-alternating ferroelectric goggles with negligible cross-talk, and used a 2AFC staircase method to estimate contrast thresholds and psychometric slopes. Four naive observers completed 20 000 trials each, and their mean threshold ratios were 1.63, 1.69, 1.71, 1.81 - grand mean 1.71 - well above the classical v2. Mean ratios tended to be slightly lower (~1.60) at low spatial or high temporal frequencies. We modelled contrast detection very simply by assuming a single binocular mechanism whose response is proportional to (Lm + Rm) p, followed by fixed additive noise, where L,R are contrasts in the left and right eyes, and m, p are constants. Contrast-gain-control effects were assumed to be negligible near threshold. On this model the threshold ratio is 2(?1/m), implying that m=1.3 on average, while the Weibull psychometric slope (median 3.28) equals 1.247mp, yielding p=2.0. Together, the model and data suggest that, at low contrasts across a wide spatiotemporal frequency range, monocular pathways are nearly linear in their contrast response (m close to 1), while a strongly accelerating nonlinearity (p=2, a 'soft threshold') occurs after binocular summation. [Supported by EPSRC project grant GR/S74515/01]
Resumo:
In experiments reported elsewhere at this conference, we have revealed two striking results concerning binocular interactions in a masking paradigm. First, at low mask contrasts, a dichoptic masking grating produces a small facilitatory effect on the detection of a similar test grating. Second, the psychometric slope for dichoptic masking starts high (Weibull ß~4) at detection threshold, becomes low (ß~1.2) in the facilitatory region, and then unusually steep at high mask contrasts (ß~5.5). Neither of these results is consistent with Legge's (1984 Vision Research 24 385 - 394) model of binocular summation, but they are predicted by a two-stage gain control model in which interocular suppression precedes binocular summation. Here, we pose a further challenge for this model by using a 'twin-mask' paradigm (cf Foley, 1994 Journal of the Optical Society of America A 11 1710 - 1719). In 2AFC experiments, observers detected a patch of grating (1 cycle deg-1, 200 ms) presented to one eye in the presence of a pedestal in the same eye and a spatially identical mask in the other eye. The pedestal and mask contrasts varied independently, producing a two-dimensional masking space in which the orthogonal axes (10X10 contrasts) represent conventional dichoptic and monocular masking. The resulting surface (100 thresholds) confirmed and extended the observations above, and fixed the six parameters in the model, which fitted the data well. With no adjustment of parameters, the model described performance in a further experiment where mask and test were presented to both eyes. Moreover, in both model and data, binocular summation was greater than a factor of v2 at detection threshold. We conclude that this two-stage nonlinear model, with interocular suppression, gives a good account of early binocular processes in the perception of contrast. [Supported by EPSRC Grant Reference: GR/S74515/01]
Resumo:
When a textured surface is modulated in depth and illuminated, parts of the surface receive different levels of illumination; the resulting variations in luminance can be used to infer the shape of the depth modulations-shape from shading. The changes in illumination also produce changes in the amplitude of the texture, although local contrast remains constant. We investigated the role of texture amplitude in supporting shape from shading. If a luminance plaid is added to a binary noise texture (LM), shape from shading produces perception of corrugations in two directions. If the amplitude of the noise is also modulated (AM) such that it is in-phase with one of the luminance sinusoids and out-of-phase with the other, the resulting surface is seen as corrugated in only one directionöthat supported by the in-phase pairing. We confirmed this subjective report experimentally, using a depth-mapping technique. Further, we asked naïve observers to indicate the direction of corrugations in plaids made up of various combinations of LM and AM. LM+AM was seen as having most depth, then LM-only, then LM-AM, and then AM-only. Our results suggest that while LM is required to see depth from shading, its phase relative to any AM component is also important.
Resumo:
Previous studies have suggested separate channels for detection of first-order luminance modulations (LM) and second-order modulations of the local amplitude (AM) of a texture. Mixtures of LM and AM with different phase relationships appear very different: in-phase compounds (LM + AM) look like 3-D corrugated surfaces, while out-of-phase compounds (LM - AM) appear flat and/or transparent. This difference may arise because the in-phase compounds are consistent with multiplicative shading, while the out-of-phase compounds are not. We investigated the role of these modulation components in surface depth perception. We used a textured background with thin bars formed by local changes in luminance and/or texture amplitude. These stimuli appear as embossed surfaces with wide and narrow regions. Keeping the AM modulation depth fixed at a suprathreshold level, we determined the amount of luminance contrast required for observers to correctly indicate the width (narrow or wide) of 'raised' regions in the display. Performance (compared to the LM-only case) was facilitated by the presence of AM, but, unexpectedly, performance for LM - AM was as good as for LM + AM. Thus, these results suggest that there is an interaction between first-order and second-order mechanisms during depth perception based on shading cues, but the phase dependence is not yet understood.