814 resultados para Observational Methodology
Resumo:
We present the first observational evidence of the near-Sun distortion of the leading edge of a coronal mass ejection (CME) by the ambient solar wind into a concave structure. On 2007 November 14, a CME was observed by coronagraphs onboard the STEREO-B spacecraft, possessing a circular cross section. Subsequently the CME passed through the field of view of the STEREO-B Heliospheric Imagers where the leading edge was observed to distort into an increasingly concave structure. The CME observations are compared to an analytical flux rope model constrained by a magnetohydrodynamic solar wind solution. The resultant bimodal speed profile is used to kinematically distort a circular structure that replicates the initial shape of the CME. The CME morphology is found to change rapidly over a relatively short distance. This indicates an approximate radial distance in the heliosphere where the solar wind forces begin to dominate over the magnetic forces of the CME influencing the shape of the CME.
Resumo:
From April 2010, the General Pharmaceutical Council (GPhC) will be responsible for the statutory regulation of pharmacists and pharmacy technicians in Great Britain (GB).[1] All statutorily regulated health professionals will need to periodically demonstrate their fitness-to-practise through a process of revalidation.[2] One option being considered in GB is that continuing professional development (CPD) records will form a part of the evidence submitted for revalidation, similar to the system in New Zealand.[3] At present, pharmacy professionals must make a minimum of nine CPD entries per annum from 1 March 2009 using the Royal Pharmaceutical Society of Great Britain (RPSGB) CPD framework. Our aim was to explore the applicability of new revalidation standards within the current CPD framework. We also wanted to review the content of CPD portfolios to assess strengths and qualities and identify any information gaps for the purpose of revalidation.
Resumo:
Chemical and meteorological parameters measured on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe 146 Atmospheric Research Aircraft during the African Monsoon Multidisciplinary Analysis (AMMA) campaign are presented to show the impact of NOx emissions from recently wetted soils in West Africa. NO emissions from soils have been previously observed in many geographical areas with different types of soil/vegetation cover during small scale studies and have been inferred at large scales from satellite measurements of NOx. This study is the first dedicated to showing the emissions of NOx at an intermediate scale between local surface sites and continental satellite measurements. The measurements reveal pronounced mesoscale variations in NOx concentrations closely linked to spatial patterns of antecedent rainfall. Fluxes required to maintain the NOx concentrations observed by the BAe-146 in a number of cases studies and for a range of assumed OH concentrations (1×106 to 1×107 molecules cm−3) are calculated to be in the range 8.4 to 36.1 ng N m−2 s−1. These values are comparable to the range of fluxes from 0.5 to 28 ng N m−2 s−1 reported from small scale field studies in a variety of non-nutrient rich tropical and sub-tropical locations reported in the review of Davidson and Kingerlee (1997). The fluxes calculated in the present study have been scaled up to cover the area of the Sahel bounded by 10 to 20 N and 10 E to 20 W giving an estimated emission of 0.03 to 0.30 Tg N from this area for July and August 2006. The observed chemical data also suggest that the NOx emitted from soils is taking part in ozone formation as ozone concentrations exhibit similar fine scale structure to the NOx, with enhancements over the wet soils. Such variability can not be explained on the basis of transport from other areas. Delon et al. (2008) is a companion paper to this one which models the impact of soil NOx emissions on the NOx and ozone concentration over West Africa during AMMA. It employs an artificial neural network to define the emissions of NOx from soils, integrated into a coupled chemistry-dynamics model. The results are compared to the observed data presented in this paper. Here we compare fluxes deduced from the observed data with the model-derived values from Delon et al. (2008).
Resumo:
We advocate the use of systolic design techniques to create custom hardware for Custom Computing Machines. We have developed a hardware genetic algorithm based on systolic arrays to illustrate the feasibility of the approach. The architecture is independent of the lengths of chromosomes used and can be scaled in size to accommodate different population sizes. An FPGA prototype design can process 16 million genes per second.
Resumo:
Recent coordinated observations of interplanetary scintillation (IPS) from the EISCAT, MERLIN, and STELab, and stereoscopic white-light imaging from the two heliospheric imagers (HIs) onboard the twin STEREO spacecraft are significant to continuously track the propagation and evolution of solar eruptions throughout interplanetary space. In order to obtain a better understanding of the observational signatures in these two remote-sensing techniques, the magnetohydrodynamics of the macro-scale interplanetary disturbance and the radio-wave scattering of the micro-scale electron-density fluctuation are coupled and investigated using a newly constructed multi-scale numerical model. This model is then applied to a case of an interplanetary shock propagation within the ecliptic plane. The shock could be nearly invisible to an HI, once entering the Thomson-scattering sphere of the HI. The asymmetry in the optical images between the western and eastern HIs suggests the shock propagation off the Sun–Earth line. Meanwhile, an IPS signal, strongly dependent on the local electron density, is insensitive to the density cavity far downstream of the shock front. When this cavity (or the shock nose) is cut through by an IPS ray-path, a single speed component at the flank (or the nose) of the shock can be recorded; when an IPS ray-path penetrates the sheath between the shock nose and this cavity, two speed components at the sheath and flank can be detected. Moreover, once a shock front touches an IPS ray-path, the derived position and speed at the irregularity source of this IPS signal, together with an assumption of a radial and constant propagation of the shock, can be used to estimate the later appearance of the shock front in the elongation of the HI field of view. The results of synthetic measurements from forward modelling are helpful in inferring the in-situ properties of coronal mass ejection from real observational data via an inverse approach.
Resumo:
Planning is a vital element of project management but it is still not recognized as a process variable. Its objective should be to outperform the initially defined processes, and foresee and overcome possible undesirable events. Detailed task-level master planning is unrealistic since one cannot accurately predict all the requirements and obstacles before work has even started. The process planning methodology (PPM) has thus been developed in order to overcome common problems of the overwhelming project complexity. The essential elements of the PPM are the process planning group (PPG), including a control team that dynamically links the production/site and management, and the planning algorithm embodied within two continuous-improvement loops. The methodology was tested on a factory project in Slovenia and in four successive projects of a similar nature. In addition to a number of improvement ideas and enhanced communication, the applied PPM resulted in 32% higher total productivity, 6% total savings and created a synergistic project environment.
Resumo:
Farming systems research is a multi-disciplinary holistic approach to solve the problems of small farms. Small and marginal farmers are the core of the Indian rural economy Constituting 0.80 of the total farming community but possessing only 0.36 of the total operational land. The declining trend of per capita land availability poses a serious challenge to the sustainability and profitability of farming. Under such conditions, it is appropriate to integrate land-based enterprises such as dairy, fishery, poultry, duckery, apiary, field and horticultural cropping within the farm, with the objective of generating adequate income and employment for these small and marginal farmers Under a set of farm constraints and varying levels of resource availability and Opportunity. The integration of different farm enterprises can be achieved with the help of a linear programming model. For the current review, integrated farming systems models were developed, by Way Of illustration, for the marginal, small, medium and large farms of eastern India using linear programming. Risk analyses were carried out for different levels of income and enterprise combinations. The fishery enterprise was shown to be less risk-prone whereas the crop enterprise involved greater risk. In general, the degree of risk increased with the increasing level of income. With increase in farm income and risk level, the resource use efficiency increased. Medium and large farms proved to be more profitable than small and marginal farms with higher level of resource use efficiency and return per Indian rupee (Rs) invested. Among the different enterprises of integrated farming systems, a chain of interaction and resource flow was observed. In order to make fanning profitable and improve resource use efficiency at the farm level, the synergy among interacting components of farming systems should be exploited. In the process of technology generation, transfer and other developmental efforts at the farm level (contrary to the discipline and commodity-based approaches which have a tendency to be piecemeal and in isolation), it is desirable to place a whole-farm scenario before the farmers to enhance their farm income, thereby motivating them towards more efficient and sustainable fanning.
Methodology of the evaluation programme: Experience and innovation: How the research methods evolved
Resumo:
This paper explores the theoretical developments and subsequent uptake of sequential methodology in clinical studies in the 25 years since Statistics in Medicine was launched. The review examines the contributions which have been made to all four phases into which clinical trials are traditionally classified and highlights major statistical advancements, together with assessing application of the techniques. The vast majority of work has been in the setting of phase III clinical trials and so emphasis will be placed here. Finally, comments are given indicating how the subject area may develop in the future.
Resumo:
The UK construction industry is in the process of trying to adopt a new culture based on the large-scale take up of innovative practices. Through the Demonstration Project process many organizations are implementing changed practices and learning from the experiences of others. This is probably the largest experiment in innovation in any industry in recent times. The long-term success will be measured by the effectiveness of embedding the new practices in the organization. As yet there is no recognized approach to measuring the receptivity of the organization to the innovation process as an indication of the likelihood of long-term development. The development of an appropriate approach is described here. Existing approaches to the measurement of the take up of innovation were reviewed and where appropriate used as the base for the development of a questionnaire. The questionnaire could be applicable to multi-organizational construction project situations such that the output could determine an individual organization's innovative practices via an innovation scorecard, a project team's approach or it could be used to survey a wide cross-section of the industry.