950 resultados para Objective measure
Resumo:
Our nervous system can efficiently recognize objects in spite of changes in contextual variables such as perspective or lighting conditions. Several lines of research have proposed that this ability for invariant recognition is learned by exploiting the fact that object identities typically vary more slowly in time than contextual variables or noise. Here, we study the question of how this "temporal stability" or "slowness" approach can be implemented within the limits of biologically realistic spike-based learning rules. We first show that slow feature analysis, an algorithm that is based on slowness, can be implemented in linear continuous model neurons by means of a modified Hebbian learning rule. This approach provides a link to the trace rule, which is another implementation of slowness learning. Then, we show analytically that for linear Poisson neurons, slowness learning can be implemented by spike-timing-dependent plasticity (STDP) with a specific learning window. By studying the learning dynamics of STDP, we show that for functional interpretations of STDP, it is not the learning window alone that is relevant but rather the convolution of the learning window with the postsynaptic potential. We then derive STDP learning windows that implement slow feature analysis and the "trace rule." The resulting learning windows are compatible with physiological data both in shape and timescale. Moreover, our analysis shows that the learning window can be split into two functionally different components that are sensitive to reversible and irreversible aspects of the input statistics, respectively. The theory indicates that irreversible input statistics are not in favor of stable weight distributions but may generate oscillatory weight dynamics. Our analysis offers a novel interpretation for the functional role of STDP in physiological neurons.
Resumo:
The integration and application of a new multi-objective tabu search optimization algorithm for Fluid Structure Interaction (FSI) problems are presented. The aim is to enhance the computational design process for real world applications and to achieve higher performance of the whole system for the four considered objectives. The described system combines the optimizer with a well established FSI solver which is based on the fully implicit, monolithic formuFlation of the problem in the Arbitrary Lagrangian-Eulerian FEM approach. The proposed solver resolves the proposed uid-structure interaction benchmark which describes the self-induced elastic deformation of a beam attached to a cylinder in laminar channel ow. The optimized ow characteristics of the aforementioned geometrical arrangement illustrate the performance of the system in two dimensions. Special emphasis is given to the analysis of the simulation package, which is of high accuracy and is the core of application. The design process identifies the best combination of ow features for optimal system behavior and the most important objectives. In addition, the presented methodology has the potential to run in parallel, which will significantly speed-up the elapsed time. Finite Element Method (FEM), Fluid-Structure Interaction (FSI), Multi-Ojective Tabu search (MOTS2). Copyright © 2013 Tech Science Press.
Resumo:
The notion of coupling within a design, particularly within the context of Multidisciplinary Design Optimization (MDO), is much used but ill-defined. There are many different ways of measuring design coupling, but these measures vary in both their conceptions of what design coupling is and how such coupling may be calculated. Within the differential geometry framework which we have previously developed for MDO systems, we put forth our own design coupling metric for consideration. Our metric is not commensurate with similar types of coupling metrics, but we show that it both provides a helpful geo- metric interpretation of coupling (and uncoupledness in particular) and exhibits greater generality and potential for analysis than those similar metrics. Furthermore, we discuss how the metric might be profitably extended to time-varying problems and show how the metric's measure of coupling can be applied to multi-objective optimization problems (in unconstrained optimization and in MDO). © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
We investigate the performance of different variants of a suitably tailored Tabu Search optimisation algorithm on a higher-order design problem. We consider four objective func- tions to describe the performance of a compressor stator row, subject to a number of equality and inequality constraints. The same design problem has been previously in- vestigated through single-, bi- and three-objective optimisation studies. However, in this study we explore the capabilities of enhanced variants of our Multi-objective Tabu Search (MOTS) optimisation algorithm in the context of detailed 3D aerodynamic shape design. It is shown that with these enhancements to the local search of the MOTS algorithm we can achieve a rapid exploration of complicated design spaces, but there is a trade-off be- tween speed and the quality of the trade-off surface found. Rapidly explored design spaces reveal the extremes of the objective functions, but the compromise optimum areas are not very well explored. However, there are ways to adapt the behaviour of the optimiser and maintain both a very efficient rate of progress towards the global optimum Pareto front and a healthy number of design configurations lying on the trade-off surface and exploring the compromise optimum regions. These compromise solutions almost always represent the best qualitative balance between the objectives under consideration. Such enhancements to the effectiveness of design space exploration make engineering design optimisation with multiple objectives and robustness criteria ever more practicable and attractive for modern advanced engineering design. Finally, new research questions are addressed that highlight the trade-offs between intelligence in optimisation algorithms and acquisition of qualita- tive information through computational engineering design processes that reveal patterns and relations between design parameters and objective functions, but also speed versus optimum quality. © 2012 AIAA.
Resumo:
The most common approach to decision making in multi-objective optimisation with metaheuristics is a posteriori preference articulation. Increased model complexity and a gradual increase of optimisation problems with three or more objectives have revived an interest in progressively interactive decision making, where a human decision maker interacts with the algorithm at regular intervals. This paper presents an interactive approach to multi-objective particle swarm optimisation (MOPSO) using a novel technique to preference articulation based on decision space interaction and visual preference articulation. The approach is tested on a 2D aerofoil design case study and comparisons are drawn to non-interactive MOPSO. © 2013 IEEE.
Resumo:
This paper introduces a new version of the multiobjective Alliance Algorithm (MOAA) applied to the optimization of the NACA 0012 airfoil section, for minimization of drag and maximization of lift coefficients, based on eight section shape parameters. Two software packages are used: XFoil which evaluates each new candidate airfoil section in terms of its aerodynamic efficiency, and a Free-Form Deformation tool to manage the section geometry modifications. Two versions of the problem are formulated with different design variable bounds. The performance of this approach is compared, using two indicators and a statistical test, with that obtained using NSGA-II and multi-objective Tabu Search (MOTS) to guide the optimization. The results show that the MOAA outperforms MOTS and obtains comparable results with NSGA-II on the first problem, while in the other case NSGA-II is not able to find feasible solutions and the MOAA is able to outperform MOTS. © 2013 IEEE.
Resumo:
We are developing a wind turbine blade optimisation package CoBOLDT (COmputa- tional Blade Optimisation and Load De ation Tool) for the optimisation of large horizontal- axis wind turbines. The core consists of the Multi-Objective Tabu Search (MOTS), which controls a spline parameterisation module, a fast geometry generation and a stationary Blade Element Momentum (BEM) code to optimise an initial wind turbine blade design. The objective functions we investigate are the Annual Energy Production (AEP) and the fl apwise blade root bending moment (MY0) for a stationary wind speed of 50 m/s. For this task we use nine parameters which define the blade chord, the blade twist (4 parameters each) and the blade radius. Throughout the optimisation a number of binary constraints are defined to limit the noise emission, to allow for transportation on land and to control the aerodynamic conditions during all phases of turbine operation. The test case shows that MOTS is capable to find enhanced designs very fast and eficiently and will provide a rich and well explored Pareto front for the designer to chose from. The optimised blade de- sign could improve the AEP of the initial blade by 5% with the same flapwise root bending moment or reduce MY0 by 7.5% with the original energy yield. Due to the fast runtime of order 10 seconds per design, a huge number of optimisation iterations is possible without the need for a large computing cluster. This also allows for increased design flexibility through the introduction of more parameters per blade function or parameterisation of the airfoils in future. © 2012 by Nordex Energy GmbH.
Resumo:
We are developing a wind turbine blade optimisation package CoBOLDT (COmputa- tional Blade Optimisation and Load Deation Tool) for the optimisation of large horizontal- axis wind turbines. The core consists of the Multi-Objective Tabu Search (MOTS), which controls a spline parameterisation module, a fast geometry generation and a stationary Blade Element Momentum (BEM) code to optimise an initial wind turbine blade design. The objective functions we investigate are the Annual Energy Production (AEP) and the apwise blade root bending moment (MY0) for a stationary wind speed of 50 m/s. For this task we use nine parameters which define the blade chord, the blade twist (4 parameters each) and the blade radius. Throughout the optimisation a number of binary constraints are defined to limit the noise emission, to allow for transportation on land and to control the aerodynamic conditions during all phases of turbine operation. The test case shows that MOTS is capable to find enhanced designs very fast and efficiently and will provide a rich and well explored Pareto front for the designer to chose from. The optimised blade de- sign could improve the AEP of the initial blade by 5% with the same apwise root bending moment or reduce MY0 by 7.5% with the original energy yield. Due to the fast runtime of order 10 seconds per design, a huge number of optimisation iterations is possible without the need for a large computing cluster. This also allows for increased design flexibility through the introduction of more parameters per blade function or parameterisation of the airfoils in future. © 2012 AIAA.
Resumo:
A new version of the Multi-objective Alliance Algorithm (MOAA) is described. The MOAA's performance is compared with that of NSGA-II using the epsilon and hypervolume indicators to evaluate the results. The benchmark functions chosen for the comparison are from the ZDT and DTLZ families and the main classical multi-objective (MO) problems. The results show that the new MOAA version is able to outperform NSGA-II on almost all the problems.
Resumo:
Genetic algorithms (GAs) have been used to tackle non-linear multi-objective optimization (MOO) problems successfully, but their success is governed by key parameters which have been shown to be sensitive to the nature of the particular problem, incorporating concerns such as the numbers of objectives and variables, and the size and topology of the search space, making it hard to determine the best settings in advance. This work describes a real-encoded multi-objective optimizing GA (MOGA) that uses self-adaptive mutation and crossover, and which is applied to optimization of an airfoil, for minimization of drag and maximization of lift coefficients. The MOGA is integrated with a Free-Form Deformation tool to manage the section geometry, and XFoil which evaluates each airfoil in terms of its aerodynamic efficiency. The performance is compared with those of the heuristic MOO algorithms, the Multi-Objective Tabu Search (MOTS) and NSGA-II, showing that this GA achieves better convergence.
Resumo:
The design of wind turbine blades is a true multi-objective engineering task. The aerodynamic effectiveness of the turbine needs to be balanced with the system loads introduced by the rotor. Moreover the problem is not dependent on a single geometric property, but besides other parameters on a combination of aerofoil family and various blade functions. The aim of this paper is therefore to present a tool which can help designers to get a deeper insight into the complexity of the design space and to find a blade design which is likely to have a low cost of energy. For the research we use a Computational Blade Optimisation and Load Deflation Tool (CoBOLDT) to investigate the three extreme point designs obtained from a multi-objective optimisation of turbine thrust, annual energy production as well as mass for a horizontal axis wind turbine blade. The optimisation algorithm utilised is based on Multi-Objective Tabu Search which constitutes the core of CoBOLDT. The methodology is capable to parametrise the spanning aerofoils with two-dimensional Free Form Deformation and blade functions with two tangentially connected cubic splines. After geometry generation we use a panel code to create aerofoil polars and a stationary Blade Element Momentum code to evaluate turbine performance. Finally, the obtained loads are fed into a structural layout module to estimate the mass and stiffness of the current blade by means of a fully stressed design. For the presented test case we chose post optimisation analysis with parallel coordinates to reveal geometrical features of the extreme point designs and to select a compromise design from the Pareto set. The research revealed that a blade with a feasible laminate layout can be obtained, that can increase the energy capture and lower steady state systems loads. The reduced aerofoil camber and an increased L/. D-ratio could be identified as the main drivers. This statement could not be made with other tools of the research community before. © 2013 Elsevier Ltd.
Resumo:
Humans appear to be sensitive to relative small changes in their surroundings. These changes are often initially perceived as irrelevant, but they can cause significant changes in behavior. However, how exactly people's behavior changes is often hard to quantify. A reliable and valid tool is needed in order to address such a question, ideally measuring an important point of interaction, such as the hand. Wearable-body-sensor systems can be used to obtain valuable, behavioral information. These systems are particularly useful for assessing functional interactions that occur between the endpoints of the upper limbs and our surroundings. A new method is explored that consists of computing hand position using a wearable sensor system and validating it against a gold standard reference measurement (optical tracking device). Initial outcomes related well to the gold standard measurements (r = 0.81) showing an acceptable average root mean square error of 0.09 meters. Subsequently, the use of this approach was further investigated by measuring differences in motor behavior, in response to a changing environment. Three subjects were asked to perform a water pouring task with three slightly different containers. Wavelet analysis was introduced to assess how motor consistency was affected by these small environmental changes. Results showed that the behavioral motor adjustments to a variable environment could be assessed by applying wavelet coherence techniques. Applying these procedures in everyday life, combined with correct research methodologies, can assist in quantifying how environmental changes can cause alterations in our motor behavior.
Resumo:
The explicit expression between composition and mechanical properties of silicone rubber was derived from the physics of polymer elasticity, the implicit expression among material composition, reaction conditions and reaction efficiency was obtained from chemical thermodynamics and kinetics, and then an implicit multi-objective optimization model was constructed. Genetic algorithm was applied to optimize material composition and reaction conditions, and the finite element method of cross-linking reaction processes was used to solve multi-objective functions, on the basis of which a new optimization methodology of crosslinking reaction processes was established. Using this methodology, rubber materials can be designed according to pre-specified requirements.