932 resultados para Object-oriented programming (Computer science)
Resumo:
Web Science - Group 15 created an interactive infographic which informs prospective applicants about the new Web Science undergraduate degrees offered at the University of Southampton, starting in October 2013. Web Science as a new and exciting field of research is also briefly outlined, supported by two video interviews with Dr Les Car, a web scientist.
Resumo:
Wednesday 9th April 2014 Speaker(s): Guus Schreiber Time: 09/04/2014 11:00-11:50 Location: B32/3077 File size: 546Mb Abstract In this talk I will discuss linked data for museums, archives and libraries. This area is known for its knowledge-rich and heterogeneous data landscape. The objects in this field range from old manuscripts to recent TV programs. Challenges in this field include common metadata schema's, inter-linking of the omnipresent vocabularies, cross-collection search strategies, user-generated annotations and object-centric versus event-centric views of data. This work can be seen as part of the rapidly evolving field of digital humanities. Speaker Biography Guus Schreiber Guus is a professor of Intelligent Information Systems at the Department of Computer Science at VU University Amsterdam. Guus’ research interests are mainly in knowledge and ontology engineering with a special interest for applications in the field of cultural heritage. He was one of the key developers of the CommonKADS methodology. Guus acts as chair of W3C groups for Semantic Web standards such as RDF, OWL, SKOS and REFa. His research group is involved in a wide range of national and international research projects. He is now project coordinator of the EU Integrated project No Tube concerned with integration of Web and TV data with the help of semantics and was previously Scientific Director of the EU Network of Excellence “Knowledge Web”.
Resumo:
Abstract A frequent assumption in Social Media is that its open nature leads to a representative view of the world. In this talk we want to consider bias occurring in the Social Web. We will consider a case study of liquid feedback, a direct democracy platform of the German pirate party as well as models of (non-)discriminating systems. As a conclusion of this talk we stipulate the need of Social Media systems to bias their working according to social norms and to publish the bias they introduce. Speaker Biography: Prof Steffen Staab Steffen studied in Erlangen (Germany), Philadelphia (USA) and Freiburg (Germany) computer science and computational linguistics. Afterwards he worked as researcher at Uni. Stuttgart/Fraunhofer and Univ. Karlsruhe, before he became professor in Koblenz (Germany). Since March 2015 he also holds a chair for Web and Computer Science at Univ. of Southampton sharing his time between here and Koblenz. In his research career he has managed to avoid almost all good advice that he now gives to his team members. Such advise includes focusing on research (vs. company) or concentrating on only one or two research areas (vs. considering ontologies, semantic web, social web, data engineering, text mining, peer-to-peer, multimedia, HCI, services, software modelling and programming and some more). Though, actually, improving how we understand and use text and data is a good common denominator for a lot of Steffen's professional activities.
Resumo:
In this session we'll explore how Microsoft uses data science and machine learning across it's entire business, from Windows and Office, to Skype and XBox. We'll look at how companies across the world use Microsoft technology for empowering their businesses in many different industries. And we'll look at data science technologies you can use yourselves, such as Azure Machine Learning and Power BI. Finally we'll discuss job opportunities for data scientists and tips on how you can be successful!
Resumo:
La gestió de l'aigua residual és una tasca complexa. Hi ha moltes substàncies contaminants conegudes però encara moltes per conèixer, i el seu efecte individual o col·lgectiu és difícil de predir. La identificació i avaluació dels impactes ambientals resultants de la interacció entre els sistemes naturals i socials és un assumpte multicriteri. Els gestors ambientals necessiten eines de suport pels seus diagnòstics per tal de solucionar problemes ambientals. Les contribucions d'aquest treball de recerca són dobles: primer, proposar l'ús d'un enfoc basat en la modelització amb agents per tal de conceptualitzar i integrar tots els elements que estan directament o indirectament involucrats en la gestió de l'aigua residual. Segon, proposar un marc basat en l'argumentació amb l'objectiu de permetre als agents raonar efectivament. La tesi conté alguns exemples reals per tal de mostrar com un marc basat amb agents que argumenten pot suportar diferents interessos i diferents perspectives. Conseqüentment, pot ajudar a construir un diàleg més informat i efectiu i per tant descriure millor les interaccions entre els agents. En aquest document es descriu primer el context estudiat, escalant el problema global de la gestió de la conca fluvial a la gestiódel sistema urbà d'aigües residuals, concretament l'escenari dels abocaments industrials. A continuació, s'analitza el sistema mitjançant la descripció d'agents que interaccionen. Finalment, es descriuen alguns prototips capaços de raonar i deliberar, basats en la lògica no monòtona i en un llenguatge declaratiu (answer set programming). És important remarcar que aquesta tesi enllaça dues disciplines: l'enginyeria ambiental (concretament l'àrea de la gestió de les aigües residuals) i les ciències de la computació (concretament l'àrea de la intel·ligència artificial), contribuint així a la multidisciplinarietat requerida per fer front al problema estudiat. L'enginyeria ambiental ens proporciona el coneixement del domini mentre que les ciències de la computació ens permeten estructurar i especificar aquest coneixement.
Resumo:
The proposal presented in this thesis is to provide designers of knowledge based supervisory systems of dynamic systems with a framework to facilitate their tasks avoiding interface problems among tools, data flow and management. The approach is thought to be useful to both control and process engineers in assisting their tasks. The use of AI technologies to diagnose and perform control loops and, of course, assist process supervisory tasks such as fault detection and diagnose, are in the scope of this work. Special effort has been put in integration of tools for assisting expert supervisory systems design. With this aim the experience of Computer Aided Control Systems Design (CACSD) frameworks have been analysed and used to design a Computer Aided Supervisory Systems (CASSD) framework. In this sense, some basic facilities are required to be available in this proposed framework: ·
Resumo:
Não é novidade que o paradigma vigente baseia-se na Internet, em que cada vez mais aplicações mudam o seu modelo de negócio relativamente a licenciamento e manutenção, para passar a oferecer ao utilizador final uma aplicação mais acessível no que concerne a licenciamento e custos de manutenção, já que as aplicações se encontram distribuídas eliminando os custos de capitais e operacionais inerentes a uma arquitetura centralizada. Com a disseminação das Interfaces de Programação de Aplicações (Application Programming Interfaces – API) baseadas na Internet, os programadores passaram a poder desenvolver aplicações que utilizam funcionalidades disponibilizadas por terceiros, sem terem que as programar de raiz. Neste conceito, a API das aplicações Google® permitem a distribuição de aplicações a um mercado muito vasto e a integração com ferramentas de produtividade, sendo uma oportunidade para a difusão de ideias e conceitos. Este trabalho descreve o processo de conceção e implementação de uma plataforma, usando as tecnologias HTML5, Javascript, PHP e MySQL com integração com ®Google Apps, com o objetivo de permitir ao utilizador a preparação de orçamentos, desde o cálculo de preços de custo compostos, preparação dos preços de venda, elaboração do caderno de encargos e respetivo cronograma.
Resumo:
The motion of a car is described using a stochastic model in which the driving processes are the steering angle and the tangential acceleration. The model incorporates exactly the kinematic constraint that the wheels do not slip sideways. Two filters based on this model have been implemented, namely the standard EKF, and a new filter (the CUF) in which the expectation and the covariance of the system state are propagated accurately. Experiments show that i) the CUF is better than the EKF at predicting future positions of the car; and ii) the filter outputs can be used to control the measurement process, leading to improved ability to recover from errors in predictive tracking.
Resumo:
Model based vision allows use of prior knowledge of the shape and appearance of specific objects to be used in the interpretation of a visual scene; it provides a powerful and natural way to enforce the view consistency constraint. A model based vision system has been developed within ESPRIT VIEWS: P2152 which is able to classify and track moving objects (cars and other vehicles) in complex, cluttered traffic scenes. The fundamental basis of the method has been previously reported. This paper presents recent developments which have extended the scope of the system to include (i) multiple cameras, (ii) variable camera geometry, and (iii) articulated objects. All three enhancements have easily been accommodated within the original model-based approach
Resumo:
The paper reports an interactive tool for calibrating a camera, suitable for use in outdoor scenes. The motivation for the tool was the need to obtain an approximate calibration for images taken with no explicit calibration data. Such images are frequently presented to research laboratories, especially in surveillance applications, with a request to demonstrate algorithms. The method decomposes the calibration parameters into intuitively simple components, and relies on the operator interactively adjusting the parameter settings to achieve a visually acceptable agreement between a rectilinear calibration model and his own perception of the scene. Using the tool, we have been able to calibrate images of unknown scenes, taken with unknown cameras, in a matter of minutes. The standard of calibration has proved to be sufficient for model-based pose recovery and tracking of vehicles.
Resumo:
This paper reports the development of a highly parameterised 3-D model able to adopt the shapes of a wide variety of different classes of vehicles (cars, vans, buses, etc), and its subsequent specialisation to a generic car class which accounts for most commonly encountered types of car (includng saloon, hatchback and estate cars). An interactive tool has been developed to obtain sample data for vehicles from video images. A PCA description of the manually sampled data provides a deformable model in which a single instance is described as a 6 parameter vector. Both the pose and the structure of a car can be recovered by fitting the PCA model to an image. The recovered description is sufficiently accurate to discriminate between vehicle sub-classes.
Resumo:
This paper reports the current state of work to simplify our previous model-based methods for visual tracking of vehicles for use in a real-time system intended to provide continuous monitoring and classification of traffic from a fixed camera on a busy multi-lane motorway. The main constraints of the system design were: (i) all low level processing to be carried out by low-cost auxiliary hardware, (ii) all 3-D reasoning to be carried out automatically off-line, at set-up time. The system developed uses three main stages: (i) pose and model hypothesis using 1-D templates, (ii) hypothesis tracking, and (iii) hypothesis verification, using 2-D templates. Stages (i) & (iii) have radically different computing performance and computational costs, and need to be carefully balanced for efficiency. Together, they provide an effective way to locate, track and classify vehicles.
Resumo:
A driver controls a car by turning the steering wheel or by pressing on the accelerator or the brake. These actions are modelled by Gaussian processes, leading to a stochastic model for the motion of the car. The stochastic model is the basis of a new filter for tracking and predicting the motion of the car, using measurements obtained by fitting a rigid 3D model to a monocular sequence of video images. Experiments show that the filter easily outperforms traditional filters.
Resumo:
The paper describes a novel integrated vision system in which two autonomous visual modules are combined to interpret a dynamic scene. The first module employs a 3D model-based scheme to track rigid objects such as vehicles. The second module uses a 2D deformable model to track non-rigid objects such as people. The principal contribution is a novel method for handling occlusion between objects within the context of this hybrid tracking system. The practical aim of the work is to derive a scene description that is sufficiently rich to be used in a range of surveillance tasks. The paper describes each of the modules in outline before detailing the method of integration and the handling of occlusion in particular. Experimental results are presented to illustrate the performance of the system in a dynamic outdoor scene involving cars and people.