920 resultados para Numerical Operator
Resumo:
In this work, a numerical model to perform non-linear analysis of building floor structures is proposed. The presented model is derived from the Kirchhoff-s plate bending formulation of the boundary element method (BENI) for zoned domains, in which the plate stiffness is modified by the presence of membrane effects. In this model, no approximation of the generalized forces along the interface is required and the compatibility and equilibrium conditions along interfaces are imposed at the integral equation level. In order to reduce the number of degrees of freedom, the Navier Bernoulli hypothesis is assumed to simplify the strain field for the thin sub-regions (rectangular beams). The non-linear formulation is obtained from the linear formulation by incorporating initial internal force fields, which are approximated by using the well-known cell sub-division. Then, the non-linear solution of algebraic equations is obtained by using the concept of the consistent tangent operator. The Von Mises criterion is adopted to govern the elasto-plastic material behaviour checked at points along the plate thickness and along the rectangular beam element axes. The numerical representations are accurately obtained by either computing analytically the element integrals or performing the numerical integration accurately using an appropriate sub-elementation scheme. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The method of the fourth-order cumulant of Challa, Landau, and Binder is used together with the Monte Carlo histogram technique of Ferrenberg and Swendsen to study the order of the phase transitions of two-dimensional Ising systems with multispin interactions in the horizontal direction and two-body interactions in the vertical direction.
Resumo:
The numerical simulation of the mixmaster universe serves the purpose of suggesting two kinds of results. The intrinsic time evolution, during contraction, will be seen to be nonchaotic. This is a necessary feature of relativistic cosmological models undergoing this kind of motion. The mixmaster model also provides a clue on how to define chaoticity for systems described by nonautonomous sets of differential equations.
PHYLOGENETIC STUDIES OF SOME SPECIES OF THE GENUS COFFEA .2. NUMERICAL-ANALYSIS OF ISOENZYMATIC DATA
Resumo:
Thirteen species of Coffea were studied for five enzymes systems, including alpha and beta esterase, alkaline phosphatase, acid phosphatase, malate dehydrogenase and acid dehydrogenase. Three coefficients of similarity: Simple Matching, Jaccard and Ochiai and three different clustering methods: Single Linkage, Complete Linkage and Unweighted Pair Group, using Arithmetic Averages (UPGMA) were used to analyse the data.The phylogenetic relationships among the twelve diploid species and between them and the tetraploid species C. arabica showed that similarity among species of the same subsection is not always greater than among species of different subsections. In addition, although there are several similarity groups in common, established by isoenzymatic polymorphism, morphological characteristics, chemical data, crossability and geographic distribution, there is no common trend among the phylogenetic relationships as indicated by all these different evaluating procedures.
Resumo:
An iterative Neumann series method, employing a real auxiliary scattering integral equation, is used to calculate scattering lengths and phase shifts for the atomic Yukawa and exponential potentials. For these potentials the original Neumann series diverges. The present iterative method yields results that are far better, in convergence, stability and precision, than other momentum space methods. Accurate result is obtained in both cases with an estimated error of about 1 in 10(10) after some 8-10 iterations.
Resumo:
In this paper, we have investigated a region of direct stable orbits around the Moon, whose stability is related to the H2 Family of periodic orbits and to the quasi-periodic orbits that oscillate around them. The stability criteria adopted was that the path did not escape from the Moon during an integration period of 1000 days (remaining with negative two-body Moon-probe orbital energy during this period). Considering the three-dimensional four-body Sun-Earth-Moon-probe problem, we investigated the evolution of the size of the stability region, taking into account the eccentricity of the Earth's orbit, the eccentricity and inclination of the Moon's orbit, and the solar radiation pressure on the probe. We also investigated the evolution of the region's size and its location by varying the inclination of the probe's initial osculating orbit relative to the Moon's orbital plane between 0 degrees and 180 degrees. The size of the stability region diminishes; nevertheless, it remains significant for 0 <= i <= 25 degrees and 35 degrees <= i <= 45 degrees. The orbits of this region could be useful for missions by space vehicles that must remain in orbit around the Moon for periods of up to 1000 days, requiring low maintenance costs. (c) 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper made an analysis of some numerical integration methods that can be used in electromagnetic transient simulations. Among the existing methods, we analyzed the trapezoidal integration method (or Heun formula), Simpson's Rule and Runge-Kutta. These methods were used in simulations of electromagnetic transients in power systems, resulting from switching operations and maneuvers that occur in transmission lines. Analyzed the characteristics such as accuracy, computation time and robustness of the methods of integration.
Resumo:
A methodology of identification and characterization of coherent structures mostly known as clusters is applied to hydrodynamic results of numerical simulation generated for the riser of a circulating fluidized bed. The numerical simulation is performed using the MICEFLOW code, which includes the two-fluids IIT's hydrodynamic model B. The methodology for cluster characterization that is used is based in the determination of four characteristics, related to average life time, average volumetric fraction of solid, existing time fraction and frequency of occurrence. The identification of clusters is performed by applying a criterion related to the time average value of the volumetric solid fraction. A qualitative rather than quantitative analysis is performed mainly owing to the unavailability of operational data used in the considered experiments. Concerning qualitative analysis, the simulation results are in good agreement with literature. Some quantitative comparisons between predictions and experiment were also presented to emphasize the capability of the modeling procedure regarding the analysis of macroscopic scale coherent structures. (c) 2007 Elsevier B.V. All rights reserved.
Phylogenetic studies of some species of the genus Coffea. II-numerical analysis of isoenzymatic data
Resumo:
We present an operator formulation of the q-deformed dual string model amplitude using an infinite set of q-harmonic oscillators. The formalism attains the crossing symmetry and factorization and allows to express the general n-point function as a factorized product of vertices and propagators.
Resumo:
During 9-11 August 1988, a cyclone developed over Uruguay in the lee of the Andes Mountains and moved over the South Atlantic Ocean, where it redeveloped into an intense storm. This storm was responsible for unusual wave activity along the Brazilian shoreline from 22° to 32°S. The Brazilian news media reported the loss of at least one life, waves of 3 m and higher, and the disappearance of a drainage pipe, which weighed 8000 kg, off the shores of Rio de Janeiro. In this paper, the evolution of this intense storm and the associated ocean wave response is studied through European Centre for Medium-Range Weather Forecasts analyses, a hydrostatic limited-area meteorological model, and a second-generation prognostic wave model. The atmospheric model results indicated the presence of a long-lived and large fetch with surface wind velocities higher than 12 m s -1 directed toward the coast. Some areas with velocities of 20 m s -1 were embedded in the fetch. The wave model forced by this wind field was able to simulate waves with a significant height of 8 m far from the coast and about 4 m in regions very close to the Brazilian coast in agreement with the occurrence reported at Rio de Janeiro. The swell propagation toward the coast of Rio de Janeiro was obstructed by a northeastward 10-m wind during the first 24-h period of the model's integration. During the second 24-h period, the fetch was still large and strong, but the obstacle was removed by a counterclockwise rotation of wind direction favoring the swell and windsea propagation toward the Rio de Janeiro coast.
Resumo:
This paper presents a viscous three-dimensional simulations coupling Euler and boundary layer codes for calculating flows over arbitrary surfaces. The governing equations are written in a general non orthogonal coordinate system. The Levy-Lees transformation generalized to three-dimensional flows is utilized. The inviscid properties are obtained from the Euler equations using the Beam and Warming implicit approximate factorization scheme. The resulting equations are discretized and approximated by a two-point fmitedifference numerical scheme. The code developed is validated and applied to the simulation of the flowfield over aerospace vehicle configurations. The results present good correlation with the available data.
Resumo:
This work considers a problem of interest in several technological applications such as the thermal control of electronic equipment. It is also important to study the heat transfer performance of these components under off-normal conditions, such as during failure of cooling fans. The effect of natural convection on the flow and heat transfer in a cavity with two flush mounted heat sources on the left vertical wall, simulating electronic components, is studied numerically and experimentally. The influence of the power distribution, spacing between the heat sources and cavity aspect ratio have been investigated. An analysis of the average Nusselt number of the two heat sources was performed to investigate the behavior of the heat transfer coefficients. The results obtained numerically and experimentally, after an error analysis, showed a good agreement.
Resumo:
Starting from the Schwinger unitary operator bases formalism constructed out of a finite dimensional state space, the well-known q-deformed commutation relation is shown to emerge in a natural way, when the deformation parameter is a root of unity.