976 resultados para Numerical Models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we examine the time T to reach a critical number K0 of infections during an outbreak in an epidemic model with infective and susceptible immigrants. The underlying process X, which was first introduced by Ridler-Rowe (1967), is related to recurrent diseases and it appears to be analytically intractable. We present an approximating model inspired from the use of extreme values, and we derive formulae for the Laplace-Stieltjes transform of T and its moments, which are evaluated by using an iterative procedure. Numerical examples are presented to illustrate the effects of the contact and removal rates on the expected values of T and the threshold K0, when the initial time instant corresponds to an invasion time. We also study the exact reproduction number Rexact,0 and the population transmission number Rp, which are random versions of the basic reproduction number R0.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Friction in hydrodynamic bearings are a major source of losses in car engines ([69]). The extreme loading conditions in those bearings lead to contact between the matching surfaces. In such conditions not only the overall geometry of the bearing is relevant, but also the small-scale topography of the surface determines the bearing performance. The possibility of shaping the surface of lubricated bearings down to the micrometer ([57]) opened the question of whether friction can be reduced by mean of micro-textures, with mixed results. This work focuses in the development of efficient numerical methods to solve thin film (lubrication) problems down to the roughness scale of measured surfaces. Due to the high velocities and the convergent-divergent geometries of hydrodynamic bearings, cavitation takes place. To treat cavitation in the lubrication problem the Elrod- Adams model is used, a mass-conserving model which has proven in careful numerical ([12]) and experimental ([119]) tests to be essential to obtain physically meaningful results. Another relevant aspect of the modeling is that the bearing inertial effects are considered, which is necessary to correctly simulate moving textures. As an application, the effects of micro-texturing the moving surface of the bearing were studied. Realistic values are assumed for the physical parameters defining the problems. Extensive fundamental studies were carried out in the hydrodynamic lubrication regime. Mesh-converged simulations considering the topography of real measured surfaces were also run, and the validity of the lubrication approximation was assessed for such rough surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper addresses the analysis of structural vibration transmission in the presence of structural joints. The problem is tackled from a numerical point of view, analyzing some scenarios by using finite element models. The numerical results obtained making use of this process are then compared with those evaluated using the EN 12354 standard vibration reduction index concept. It is shown that, even for the simplest cases, the behavior of a structural joint is complex and evidences the frequency dependence. Comparison with results obtained by empirical formulas reveals that those of the standards cannot accurately reproduce the expected behavior, and thus indicate that alternative complementary calculation procedures are required. A simple methodology to estimate the difference between numerical and standard predictions is here proposed allowing the calculation of an adaptation term that makes both approaches converge. This term was found to be solution-dependent, and thus should be evaluated for each structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With advances in the synthesis and design of chemical processes there is an increasing need for more complex mathematical models with which to screen the alternatives that constitute accurate and reliable process models. Despite the wide availability of sophisticated tools for simulation, optimization and synthesis of chemical processes, the user is frequently interested in using the ‘best available model’. However, in practice, these models are usually little more than a black box with a rigid input–output structure. In this paper we propose to tackle all these models using generalized disjunctive programming to capture the numerical characteristics of each model (in equation form, modular, noisy, etc.) and to deal with each of them according to their individual characteristics. The result is a hybrid modular–equation based approach that allows synthesizing complex processes using different models in a robust and reliable way. The capabilities of the proposed approach are discussed with a case study: the design of a utility system power plant that has been decomposed into its constitutive elements, each treated differently numerically. And finally, numerical results and conclusions are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This letter presents a method to model propagation channels for estimation, in which the sampling scheme can be arbitrary. Additionally, the method yields accurate models, with a size that converges to the channel duration, measured in Nyquist periods. It can be viewed as an improvement on the usual discretization based on regular sampling at the Nyquist rate. The method is introduced in the context of multiple delay estimation using the MUSIC estimator, and is assessed through a numerical example.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The modeling of complex dynamic systems depends on the solution of a differential equations system. Some problems appear because we do not know the mathematical expressions of the said equations. Enough numerical data of the system variables are known. The authors, think that it is very important to establish a code between the different languages to let them codify and decodify information. Coding permits us to reduce the study of some objects to others. Mathematical expressions are used to model certain variables of the system are complex, so it is convenient to define an alphabet code determining the correspondence between these equations and words in the alphabet. In this paper the authors begin with the introduction to the coding and decoding of complex structural systems modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different non-Fourier models of heat conduction, that incorporate time lags in the heat flux and/or the temperature gradient, have been increasingly considered in the last years to model microscale heat transfer problems in engineering. Numerical schemes to obtain approximate solutions of constant coefficients lagging models of heat conduction have already been proposed. In this work, an explicit finite difference scheme for a model with coefficients variable in time is developed, and their properties of convergence and stability are studied. Numerical computations showing examples of applications of the scheme are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The economic design of a distillation column or distillation sequences is a challenging problem that has been addressed by superstructure approaches. However, these methods have not been widely used because they lead to mixed-integer nonlinear programs that are hard to solve, and require complex initialization procedures. In this article, we propose to address this challenging problem by substituting the distillation columns by Kriging-based surrogate models generated via state of the art distillation models. We study different columns with increasing difficulty, and show that it is possible to get accurate Kriging-based surrogate models. The optimization strategy ensures that convergence to a local optimum is guaranteed for numerical noise-free models. For distillation columns (slightly noisy systems), Karush–Kuhn–Tucker optimality conditions cannot be tested directly on the actual model, but still we can guarantee a local minimum in a trust region of the surrogate model that contains the actual local minimum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, a three-dimensional (3D) formulation based on the method of fundamental solutions (MFS) is applied to the study of acoustic horns. The implemented model follows and extends previous works that only considered two-dimensional and axisymmetric horn configurations. The more realistic case of 3D acoustic horns with symmetry regarding two orthogonal planes is addressed. The use of the domain decomposition technique with two interconnected sub-regions along a continuity boundary is proposed, allowing for the computation of the sound pressure generated by an acoustic horn installed on a rigid screen. In order to reduce the model discretization requirements for these cases, Green’s functions derived with the image source methodology are adopted, automatically accounting for the presence of symmetry conditions. A strategy for the calculation of an optimal position of the virtual sources used by the MFS to define the solution is also used, leading to improved reliability and flexibility of the proposed method. The responses obtained by the developed model are compared to reference solutions, computed by well-established models based on the boundary element method. Additionally, numerically calculated acoustic parameters, such as directivity and beamwidth, are compared with those evaluated experimentally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we propose a new methodology for the large scale optimization and process integration of complex chemical processes that have been simulated using modular chemical process simulators. Units with significant numerical noise or large CPU times are substituted by surrogate models based on Kriging interpolation. Using a degree of freedom analysis, some of those units can be aggregated into a single unit to reduce the complexity of the resulting model. As a result, we solve a hybrid simulation-optimization model formed by units in the original flowsheet, Kriging models, and explicit equations. We present a case study of the optimization of a sour water stripping plant in which we simultaneously consider economics, heat integration and environmental impact using the ReCiPe indicator, which incorporates the recent advances made in Life Cycle Assessment (LCA). The optimization strategy guarantees the convergence to a local optimum inside the tolerance of the numerical noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"November 1977."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mathematical model for long-term, three-dimensional shoreline evolution is developed. The combined effects of variations of sea level; wave refraction and diffraction; loss of sand by density currents during storms, by rip currents, and by wind; bluff erosion and berm accretion; effects of manmade structures such as long groin or navigational structures; and beach nourishment are all taken into account. A computer program is developed with various subroutines which permit modification as the state-of-the-art progresses. The program is applied to a test case at Holland Harbor, Michigan. (Author).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Authors: B.H. Johnson, R.E. Heath, B.B. Hsieh, K.W. Kim, H.L. Butler.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Prepared for U.S. Army Engineer District, Mobile."