967 resultados para Nuclear energy.
Resumo:
Collisions involving Sn-112 and Sn-124 nuclei have been calculated with the ImQMD transport model in order to place constraints on the density dependences of the nuclear symmetry energy. Consistent constraints on the symmetry energy at sub-saturation density have been obtained by comparing these transport calculations to measurements of isospin diffusion and to the ratios of neutron and proton spectra. New isospin diffusion results from E/A = 35 MeV are also presented.
Resumo:
The experimental results reveal the isospin dependence of the nuclear phase transition in terms of the Landau Free Energy description of critical phenomena. Near the critical point, different ratios of the neutron to proton concentrations lead to different critical points for the phase transition which is analogous to the phase transitions in He-4-He-3 liquid mixtures. The antisymmetrized molecular dynamics (AMD) and GEMINI models calculations were also performed and the results will be discussed as well.
Resumo:
The combinatorial model of nuclear level densities has now reached a level of accuracy comparable to that of the best global analytical expressions without suffering from the limits imposed by the statistical hypothesis on which the latter expressions rely. In particular, it provides, naturally, non-Gaussian spin distribution as well as non-equipartition of parities which are known to have an impact on cross section predictions at low energies [1, 2, 3]. Our previous global models developed in Refs. [1, 2] suffered from deficiencies, in particular in the way the collective effects - both vibrational and rotational - were treated. We have recently improved this treatment using simultaneously the single-particle levels and collective properties predicted by a newly derived Gogny interaction [4], therefore enabling a microscopic description of energy-dependent shell, pairing and deformation effects. In addition for deformed nuclei, the transition to sphericity is coherently taken into account on the basis of a temperature-dependent Hartree-Fock calculation which provides at each temperature the structure properties needed to build the level densities. This new method is described and shown to give promising results with respect to available experimental data.
Resumo:
The nuclear respiratory factor-1 (NRF1) gene is activated by lipopolysaccharide (LPS), which might reflect TLR4-mediated mitigation of cellular inflammatory damage via initiation of mitochondrial biogenesis. To test this hypothesis, we examined NRF1 promoter regulation by NFκB, and identified interspecies-conserved κB-responsive promoter and intronic elements in the NRF1 locus. In mice, activation of Nrf1 and its downstream target, Tfam, by Escherichia coli was contingent on NFκB, and in LPS-treated hepatocytes, NFκB served as an NRF1 enhancer element in conjunction with NFκB promoter binding. Unexpectedly, optimal NRF1 promoter activity after LPS also required binding by the energy-state-dependent transcription factor CREB. EMSA and ChIP assays confirmed p65 and CREB binding to the NRF1 promoter and p65 binding to intron 1. Functionality for both transcription factors was validated by gene-knockdown studies. LPS regulation of NRF1 led to mtDNA-encoded gene expression and expansion of mtDNA copy number. In cells expressing plasmid constructs containing the NRF-1 promoter and GFP, LPS-dependent reporter activity was abolished by cis-acting κB-element mutations, and nuclear accumulation of NFκB and CREB demonstrated dependence on mitochondrial H(2)O(2). These findings indicate that TLR4-dependent NFκB and CREB activation co-regulate the NRF1 promoter with NFκB intronic enhancement and redox-regulated nuclear translocation, leading to downstream target-gene expression, and identify NRF-1 as an early-phase component of the host antibacterial defenses.
Resumo:
The pKa values of ionizable groups in proteins report the free energy of site-specific proton binding and provide a direct means of studying pH-dependent stability. We measured histidine pKa values (H3, H22, and H105) in the unfolded (U), intermediate (I), and sulfate-bound folded (F) states of RNase P protein, using an efficient and accurate nuclear magnetic resonance-monitored titration approach that utilizes internal reference compounds and a parametric fitting method. The three histidines in the sulfate-bound folded protein have pKa values depressed by 0.21 ± 0.01, 0.49 ± 0.01, and 1.00 ± 0.01 units, respectively, relative to that of the model compound N-acetyl-l-histidine methylamide. In the unliganded and unfolded protein, the pKa values are depressed relative to that of the model compound by 0.73 ± 0.02, 0.45 ± 0.02, and 0.68 ± 0.02 units, respectively. Above pH 5.5, H22 displays a separate resonance, which we have assigned to I, whose apparent pKa value is depressed by 1.03 ± 0.25 units, which is ∼0.5 units more than in either U or F. The depressed pKa values we observe are consistent with repulsive interactions between protonated histidine side chains and the net positive charge of the protein. However, the pKa differences between F and U are small for all three histidines, and they have little ionic strength dependence in F. Taken together, these observations suggest that unfavorable electrostatics alone do not account for the fact that RNase P protein is intrinsically unfolded in the absence of ligand. Multiple factors encoded in the P protein sequence account for its IUP property, which may play an important role in its function.
Resumo:
The neutron multidetector DéMoN has been used to investigate the symmetric splitting dynamics in the reactions 58.64Ni + 208Pb with excitation energies ranging from 65 to 186 MeV for the composite system. An analysis based on the new backtracing technique has been applied on the neutron data to determine the two-dimensional correlations between the parent composite system initial thermal energy (EthCN) and the total neutron multiplicity (νtot), and between pre- and post-scission neutron multiplicities (νpre and νpost, respectively). The νpre distribution shape indicates the possible coexistence of fast-fission and fusion-fission for the system 58Ni + 208Pb (Ebeam = 8.86 A MeV). The analysis of the neutron multiplicities in the framework of the combined dynamical statistical model (CDSM) gives a reduced friction coefficient β = 23 ± 2512 × 1021 s-1, above the one-body dissipation limit. The corresponding fission time is τf = 40 ± 4620 × 10-21 s. © 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The need for nuclear data far from the valley of stability, for applications such as nuclear as- trophysics or future nuclear facilities, challenges the robustness as well as the predictive power of present nuclear models. Most of the nuclear data evaluation and prediction are still performed on the basis of phenomenological nuclear models. For the last decades, important progress has been achieved in funda- mental nuclear physics, making it now feasible to use more reliable, but also more complex microscopic or semi-microscopic models in the evaluation and prediction of nuclear data for practical applications. In the present contribution, the reliability and accuracy of recent nuclear theories are discussed for most of the relevant quantities needed to estimate reaction cross sections and beta-decay rates, namely nuclear masses, nuclear level densities, gamma-ray strength, fission properties and beta-strength functions. It is shown that nowadays, mean-field models can be tuned at the same level of accuracy as the phenomenological mod- els, renormalized on experimental data if needed, and therefore can replace the phenomenogical inputs in the prediction of nuclear data. While fundamental nuclear physicists keep on improving state-of-the-art models, e.g. within the shell model or ab initio models, nuclear applications could make use of their most recent results as quantitative constraints or guides to improve the predictions in energy or mass domain that will remain inaccessible experimentally.
Resumo:
This report examines the corporate policies of the major European energy companies, including the major developments in 2008.
What are the local impacts of energy systems on marine ecosystem services: a systematic map protocol
Resumo:
Background: Increasing concentrations of atmospheric greenhouse gases (GHG) and its impact on the climate has resulted in many international governments committing to reduce their GHG emissions. The UK, for example, has committed to reducing its carbon emissions by 80% by 2050. Suggested ways of reaching such a target are to increase dependency on offshore wind, offshore gas and nuclear. It is not clear, however, how the construction, operation and decommissioning of these energy systems will impact marine ecosystem services, i.e. the services obtained by people from the natural environment such as food provisioning, climate regulation and cultural inspiration. Research on ecosystem service impacts associated with offshore energy technologies is still in its infancy. The objective of this review is to bolster the evidence base by firstly, recording and describing the impacts of energy technologies at the marine ecosystems and human level in a consistent and transparent way; secondly, to translate these ecosystem and human impacts into ecosystem service impacts by using a framework to ensure consistency and comparability. The output of this process will be an objective synthesis of ecosystem service impacts comprehensive enough to cover different types of energy under the same analysis and to assist in informing how the provision of ecosystem services will change under different energy provisioning scenarios. Methods: Relevant studies will be sourced using publication databases and selected using a set of selection criteria including the identification of: (i) relevant subject populations such as marine and coastal species, marine habitat types and the general public; (ii) relevant exposure types including offshore wind farms, offshore oil and gas platforms and offshore structures connected with nuclear; (iii) relevant outcomes including changes in species structure and diversity; changes in benthic, demersal and pelagic habitats; and changes in cultural services. The impacts will be synthesised and described using a systematic map. To translate these findings into ecosystem service impacts, the Common International Classification of Ecosystem Services (CICES) and Millennium Ecosystem Assessment (MEA) frameworks are used and a detailed description of the steps taken provided to ensure transparency and replicability.
Resumo:
Energy levels and radiative rates for fine-structure transitions in nickel ions (Ni XIII-XVI) have been calculated using the GRASP code. Configuration interaction and relativistic effects have been included, and comparisons are made with available data. Energy levels and radiative rates are tabulated for transitions among the 48, 43, 32, and 84 levels of Ni XIII, Ni XIV, Ni XV, and Ni XVI, respectively. The energy levels are assessed to be accurate to better than 5% for a majority of levels, while oscillator strengths for all strong transitions are accurate to better than 20%. (C) 2003 Published by Elsevier Inc.
Resumo:
The results of a study to characterise the polarisation properties of the photon beam emerging from beamline 5D, mounted on a bending magnet source at the Synchrotron Radiation Source, Daresbury Laboratory, are presented. The expectation values for the Stokes parameters corresponding to the light transmitted by the beamline have been calculated by combining ray-tracing and optical methods. The polarisation of the light at the source is modified both by the beamline geometry and by the reflections at the optical components. Although it is often assumed that the polarising properties of grazing incidence optics are negligible, this assumption leads to rather inaccurate results in the VUV region. A study of the reflectivity shows that even at incidence angles (theta(i) = 80-85degrees) which are far from the Brewster angle (theta(B) similar to 45degrees for VUV and soft X-ray radiation) the residual changes in the amplitudes of the reflected light can result in non-negligible polarisation effects. Furthermore, reflection at grazing incidence gives rise to a substantial change in the phase, and this has the effect of rotating the elliptically polarised state. Theoretical Stokes parameters have been compared with full polarisation measurements obtained using a reflection polarimeter in the energy range 20-40 eV. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The damage induced in supercoiled plasmid DNA molecules by 1-6 keV carbon ions has been investigated as a function of ion exposure, energy and charge state. The production of short linear fragments through multiple double strand breaks has been demonstrated and exponential exposure responses for each of the topoisomers have been found. The cross section for the loss of supercoiling was calculated to be (2.2 +/- 0.5) x 10(-14) cm(2) for 2 keVC(+) ions. For singly charged carbon ions, increased damage was observed with increasing ion energy. In the case of 2 keV doubly charged ions, the damage was greater than for singly charged ions of the same energy. These observations demonstrate that ion induced damage is a function of both the kinetic and potential energies of the ion.
Resumo:
Energy levels, radiative rates, oscillator strengths, line strengths, and lifetimes have been calculated for transitions in B-like to F-like Kr ions, Kr XXXIII-XXVIII. For the calculations, the fully relativistic GRASP code has been adopted, and results are reported for all electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transitions among the lowest 125, 236, 272, 226, and 113 levels of Kr XXXII, Kr XXXI, Kr XXX, Kr XXIX, and Kr XXVIII, respectively, belonging to the n