997 resultados para Noise barriers.
Resumo:
This paper presents a pseudo-time-step method to calculate a (vector) Green function for the adjoint linearised Euler equations as a scattering problem in the frequency domain, for use as a jet-noise propagation prediction tool. A method of selecting the acoustics-related solution in a truncated spatial domain while suppressing any possible shear-layer-type instability is presented. Numerical tests for 3-D axisymmetrical parallel mean flows against semi-analytical reference solutions indicate that the new iterative algorithm is capable of producing accurate solutions with modest computational requirements.
Resumo:
The paper is devoted to extending the new efficient frequency-domain method of adjoint Green's function calculation to curvilinear multi-block RANS domains for middle and farfield sound computations. Numerical details of the method such as grids, boundary conditions and convergence acceleration are discussed. Two acoustic source models are considered in conjunction with the method and acoustic modelling results are presented for a benchmark low-Reynolds-number jet case.
Resumo:
This paper proposes a movement trajectory planning model, which is a maximum task achievement model in which signal-dependent noise is added to the movement command. In the proposed model, two optimization criteria are combined, maximum task achievement and minimum energy consumption. The proposed model has the feature that the end-point boundary conditions for position, velocity, and acceleration need not be prespecified. Consequently, the method can be applied not only to the simple point-to-point movement, but to any task. In the method in this paper, the hand trajectory is derived by a psychophysical experiment and a numerical experiment for the case in which the target is not stationary, but is a moving region. It is shown that the trajectory predicted from the minimum jerk model or the minimum torque change model differs considerably from the results of the psychophysical experiment. But the trajectory predicted from the maximum task achievement model shows good qualitative agreement with the hand trajectory obtained from the psychophysical experiment. © 2004 Wiley Periodicals, Inc.
Resumo:
We derive a closed system of equations that relates the acoustically radiating flow variables to the sources of sound for homentropic flows. We use radiating density, momentum density and modified pressure as the dependent variables which leads to simple source terms for the momentum equations. The source terms involve the non-radiating parts of the density and momentum density fields. These non-radiating components are obtained by removing the radiating wavenumbers in the Fourier domain. We demonstrate the usefulness of this new technique on an axi-symmetric jet solution of the Navier-Stokes equations, obtained by direct numerical simulation (DNS). The dominant source term is proportional to the square of the non-radiating part of the axial momentum density. We compare the sound sources to that obtained by an acoustic analogy and find that they have more realistic physical properties. Their frequency content and amplitudes are consistent with. We validate the sources by computing the radiating sound field and comparing it to the DNS solution. © 2010 by S. Sinayoko, A. Agarwal.
Resumo:
Several turbulent jet noise models starting from the classical Lighthill acoustic analogy to state-of-the art models are considered. No attempt is made to present any complete overview of jet noise theories. Instead, the aim is to emphasise the importance of sound generation and meanflow effects for the understanding and prediction of jet noise. For a recent acoustic analogy model, the consequences of jet flow simplification on the predicted sound spectra shape and the effective noise source location in the jet are discussed. © 2010 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
Carbon nanotubes (CNTs) have been determined to be field emitters of high quality, but CNTs produced by chemical vapour deposition can produce emission currents with high instability and noise. This work finds that adsorbates and amorphous carbon deposited during the growth process are the primary contributors to field emission instability, and shows that burning off the amorphous carbon in air at 450 °C removes the amorphous carbon, resulting in stabilities of better than 3 per cent over 1 h. This work removes one of the major barriers to the use of CNTs in field emission devices.
Resumo:
Model compensation is a standard way of improving the robustness of speech recognition systems to noise. A number of popular schemes are based on vector Taylor series (VTS) compensation, which uses a linear approximation to represent the influence of noise on the clean speech. To compensate the dynamic parameters, the continuous time approximation is often used. This approximation uses a point estimate of the gradient, which fails to take into account that dynamic coefficients are a function of a number of consecutive static coefficients. In this paper, the accuracy of dynamic parameter compensation is improved by representing the dynamic features as a linear transformation of a window of static features. A modified version of VTS compensation is applied to the distribution of the window of static features and, importantly, their correlations. These compensated distributions are then transformed to distributions over standard static and dynamic features. With this improved approximation, it is also possible to obtain full-covariance corrupted speech distributions. This addresses the correlation changes that occur in noise. The proposed scheme outperformed the standard VTS scheme by 10% to 20% relative on a range of tasks. © 2006 IEEE.
Resumo:
Model based compensation schemes are a powerful approach for noise robust speech recognition. Recently there have been a number of investigations into adaptive training, and estimating the noise models used for model adaptation. This paper examines the use of EM-based schemes for both canonical models and noise estimation, including discriminative adaptive training. One issue that arises when estimating the noise model is a mismatch between the noise estimation approximation and final model compensation scheme. This paper proposes FA-style compensation where this mismatch is eliminated, though at the expense of a sensitivity to the initial noise estimates. EM-based discriminative adaptive training is evaluated on in-car and Aurora4 tasks. FA-style compensation is then evaluated in an incremental mode on the in-car task. © 2011 IEEE.
Resumo:
For many realistic scenarios, there are multiple factors that affect the clean speech signal. In this work approaches to handling two such factors, speaker and background noise differences, simultaneously are described. A new adaptation scheme is proposed. Here the acoustic models are first adapted to the target speaker via an MLLR transform. This is followed by adaptation to the target noise environment via model-based vector Taylor series (VTS) compensation. These speaker and noise transforms are jointly estimated, using maximum likelihood. Experiments on the AURORA4 task demonstrate that this adaptation scheme provides improved performance over VTS-based noise adaptation. In addition, this framework enables the speech and noise to be factorised, allowing the speaker transform estimated in one noise condition to be successfully used in a different noise condition. © 2011 IEEE.
Resumo:
For speech recognition, mismatches between training and testing for speaker and noise are normally handled separately. The work presented in this paper aims at jointly applying speaker adaptation and model-based noise compensation by embedding speaker adaptation as part of the noise mismatch function. The proposed method gives a faster and more optimum adaptation compared to compensating for these two factors separately. It is also more consistent with respect to the basic assumptions of speaker and noise adaptation. Experimental results show significant and consistent gains from the proposed method. © 2011 IEEE.
Resumo:
Recently there has been interest in structured discriminative models for speech recognition. In these models sentence posteriors are directly modelled, given a set of features extracted from the observation sequence, and hypothesised word sequence. In previous work these discriminative models have been combined with features derived from generative models for noise-robust speech recognition for continuous digits. This paper extends this work to medium to large vocabulary tasks. The form of the score-space extracted using the generative models, and parameter tying of the discriminative model, are both discussed. Update formulae for both conditional maximum likelihood and minimum Bayes' risk training are described. Experimental results are presented on small and medium to large vocabulary noise-corrupted speech recognition tasks: AURORA 2 and 4. © 2011 IEEE.