963 resultados para Niobium phosphates
Resumo:
Recycling of oceanic crust into the deep mantle via subduction is a widely accepted mechanism for creating compositional heterogeneity in the upper mantle and for explaining the distinct geochemistry of mantle plumes. The oxygen isotope ratios (d18O) of some ocean island basalts (OIB) span values both above and below that of unmetasomatised upper mantle (5.5 ± 0.4 per mil) and provide support for this hypothesis, as it is widely assumed that most variations in d18O are produced by near-surface low-temperature processes. Here we show a significant linear relationship between d18O and stable iron isotope ratios (d57Fe) in a suite of pristine eclogite xenoliths. The d18O values of both bulk samples and garnets range from values within error of normal mantle to significantly lighter values. The observed range and correlation between d18O and d57Fe is unlikely to be inherited from oceanic crust, as d57Fe values determined for samples of hydrothermally altered oceanic crust do not differ significantly from the mantle value and show no correlation with d18O. It is proposed that the correlated d57Fe and d18O variations in this particular eclogite suite are predominantly related to isotopic fractionation by disequilibrium partial melting although modification by melt percolation processes cannot be ruled out. Fractionation of Fe and O isotopes by removal of partial melt enriched in isotopically heavy Fe and O is supported by negative correlations between bulk sample d57Fe and Cr content and bulk sample and garnet d18O and Sc contents, as Cr and Sc are elements that become enriched in garnet- and pyroxene-bearing melt residues. Melt extraction could take place either during subduction, where the eclogites represent the residues of melted oceanic lithosphere, or could take place during long-term residence within the lithospheric mantle, in which case the protoliths of the eclogites could be of either crustal or mantle origin. This modification of both d57Fe and d18O by melting processes and specifically the production of low-d18O signatures in mafic rocks implies that some of the isotopically light d18O values observed in OIB and eclogite xenoliths may not necessarily reflect near-surface processes or components.
Resumo:
In-situ proton-microprobe analyses are presented for glasses, plagioclases, pyroxenes, olivines, and spinels in eleven samples from Sites 834-836, 839, and 841 (vitrophyric rhyolite), plus a Tongan dacite. Elements analyzed are Mn, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Pb, and Sn (in spinels only). The data are used to calculate two sets of partition coefficients, one set based on the ratio of element in mineral/element in coexisting glass. The second set of coefficients, thought to be more robust, is corrected by application of the Rayleigh fractionation equations, which requires additional use of modal data. Data are presented for phenocryst core-rim phases and microphenocryst-groundmass phases from a few samples. Comparison with published coefficients reveals an overall consistency with those presented here, but with some notable anomalies. Examples are relatively high Zr values for pyroxenes and abnormally low Mn values in olivines and clinopyroxenes from Site 839 lavas. Some anomalies may reflect kinetic effects, but interpretation of the coefficients is complicated, especially in olivines from Sites 836 and 839, by possible crystal-liquid disequilibrium resulting from mixing processes.
Resumo:
A multi-proxy chronological framework along with sequence-stratigraphic interpretations unveils composite Milankovitch cyclicity in the sedimentary records of the Last GlacialeInterglacial cycle at NE Gela Basin on the Sicilian continental margin. Chronostratigraphic data (including foraminifera-based eco-biostratigraphy and d18O records, tephrochronological markers and 14C AMS radiometric datings) was derived from the shallow-shelf drill sites GeoB14403 (54.6 m recovery) and GeoB14414 (27.5 m), collected with both gravity and drilled MeBo cores in 193 m and 146 m water depth, respectively. The recovered intervals record Marine Isotope Stages and Substages (MIS) from MIS 5 to MIS 1, thus comprising major stratigraphic parts of the progradational deposits that form the last 100-ka depositional sequence. Calibration of shelf sedimentary units with borehole stratigraphies indicates the impact of higher-frequency (20-ka) sea level cycles punctuating this 100-ka cycle. This becomes most evident in the alternation of thick interstadial highstand (HST) wedges and thinner glacial forced-regression (FSST) units mirroring seaward shifts in coastal progradation. Albeit their relatively short-lived depositional phase, these subordinate HST units form the bulk of the 100-ka depositional sequence. Two mechanisms are proposed that likely account for enhanced sediment accumulation ratios (SAR) of up to 200 cm/ka during these intervals: (1) intensified activity of deep and intermediate Levantine Intermediate Water (LIW) associated to the drowning of Mediterranean shelves, and (2) amplified sediment flux along the flooded shelf in response to hyperpycnal plumes that generate through extreme precipitation events during overall arid conditions. Equally, the latter mechanism is thought to be at the origin of undulated features resolved in the acoustic records of MIS 5 Interstadials, which bear a striking resemblance to modern equivalents forming on late-Holocene prodeltas of other Mediterranean shallow-shelf settings.
Resumo:
Analyses are given for the core and outer colliform shell of a manganese nodule collected at a depth of 5000 m in the Indian Ocean, and for the red clay that encloses the nodules. Trace elements determined include rare earths, Nb, Ta, Th, and V. The cores of the nodules were once composed of basaltic rock, but now are phillipsite and nontronite. The outer shell is composed of manganite, with admixed quartz, phillipsite, and some geothite. The correlations established between the redox potentials and the concentration coefficients for 12 elements indicate that Eh plays a greater role in the formation of the manganiferous shells than coprecipitation properties.
Resumo:
We document the first-known Mesoproterozoic ophiolite from the southwestern part of the Amazon craton, corresponding to the Trincheira Complex of Calymmian age, and propose a tectonic model that explains many previously enigmatic features of the Precambrian history of this key craton, and discuss its role in the reconstruction of the Columbia supercontinent. The complex comprises extrusive rocks (fine-grained amphibolites derived from massive and pillowed basalts), mafic-ultramafic intrusive rocks, chert, banded iron formation (BIFs), pelites, psammitic and a smaller proportion of calc-silicate rocks. This sequence was deformed, metasomatized and metamorphosed during the development of the Alto Guaporé Belt, a Mesoproterozoic accretionary orogen. The rocks were deformed by a single tectonic event, which included isoclinal folding and metamorphism of the granulite-amphibolite facies. Layered magmatic structures were preserved in areas of low strain, including amygdaloidal and cumulate structures. Metamorphism was pervasive and reached temperatures of 780-853°C in mafic granulites and 680-720°C in amphibolites under an overall pressure of 6.8 kbar. The geochemical composition of the extrusive and intrusive rocks indicates that all noncumulus mafic-ultramafic rocks are tholeiitic basalts. The mafic-ultramafic rocks display moderately to strongly fractionation of light rare earth elements (LREE), near-flat heavy rare earth elements (HREE) patterns and moderate to strong negative high field strength elements (HFSE) anomalies (especially Nb), a geochemical signature typical of subduction zones. The lowest units of mafic granulites and porphyroblastic amphibolites in the Trincheira ophiolite are similar to the modern mid-ocean ridge basalt (MORB), although they locally display small Ta, Ti and Nb negative anomalies, indicating a small subduction influence. This behavior changes to an island arc tholeiites (IAT) signature in the upper units of fine-grained amphibolites and amphibole rich-amphibolites, characterized by progressive depletion in the incompatible elements and more pronounced negative Ta and Nb anomalies, as well as common Ti and Zr negative anomalies. Tectono-magmatic variation diagrams and chondrite-normalized REE and primitive mantle normalized patterns suggest a back-arc to intra-oceanic island arc tectonic regime for the eruption of these rocks. Therefore, the Trincheira ophiolite appears to have originated in an intraoceanic supra-subduction setting composed of an arc-back-arc system. Accordingly, the Trincheira Complex is a record of oceanic crust relics obducted during the collision of the Amazon craton and the Paraguá block during the Middle Mesoproterozoic. Thus, the recognition of the Trincheira ophiolite and suture significantly changes views on the evolution of the southern margin of the Amazon craton, and how it can influence the global tectonics and the reconstruction of the continents.