962 resultados para Nicolaischule (Leipzig, Germany)
Resumo:
The Eyjafjallajökull volcano in Iceland erupted explosively on 14 April 2010, emitting a plume of ash into the atmosphere. The ash was transported from Iceland toward Europe where mostly cloud-free skies allowed ground-based lidars at Chilbolton in England and Leipzig in Germany to estimate the mass concentration in the ash cloud as it passed overhead. The UK Met Office's Numerical Atmospheric-dispersion Modeling Environment (NAME) has been used to simulate the evolution of the ash cloud from the Eyjafjallajökull volcano during the initial phase of the ash emissions, 14–16 April 2010. NAME captures the timing and sloped structure of the ash layer observed over Leipzig, close to the central axis of the ash cloud. Relatively small errors in the ash cloud position, probably caused by the cumulative effect of errors in the driving meteorology en route, result in a timing error at distances far from the central axis of the ash cloud. Taking the timing error into account, NAME is able to capture the sloped ash layer over the UK. Comparison of the lidar observations and NAME simulations has allowed an estimation of the plume height time series to be made. It is necessary to include in the model input the large variations in plume height in order to accurately predict the ash cloud structure at long range. Quantitative comparison with the mass concentrations at Leipzig and Chilbolton suggest that around 3% of the total emitted mass is transported as far as these sites by small (<100 μm diameter) ash particles.
The regional distribution of technological development: evidence from foreign-owned firms in Germany
Resumo:
BACKGROUND: The single nucleotide polymorphism (SNP), and consequent amino acid exchange from tyrosine to cysteine at location 139 of the vkorc1 gene (i.e. tyrosine139cysteine or Y139C), is the most widespread anticoagulant resistance mutation in Norway rats (Rattus norvegicus Berk.) in Europe. Field trials were conducted to determine incidence of the Y139C SNP at two rat infested farms in Westphalia, Germany, and to estimate the practical efficacy against them of applications, using a pulsed baiting treatment regime, of a proprietary bait (KleratTM) containing 50 ppm brodifacoum. RESULTS: DNA analysis for the Y139C mutation showed that resistant rats were prevalent at the two farms, with an incidence of 80.0% and 78.6% respectively. Applications of brodifacoum bait achieved results of 99.2% and 100.0% control at the two farms, when measured by census baiting, although the treatment was somewhat prolonged at one site due to the abundance of attractive alternative food. CONCLUSION: The study showed that 50 ppm brodifacoum bait is fully effective against the Y139C SNP at the Münsterland focus and is likely to be so elsewhere in Europe where this mutation is found. The pulsed baiting regime reduced to relatively low levels the quantity of bait required to control these two substantial resistant Norway rat infestations. Previous studies had shown much larger quantities of bromadiolone and difenacoum baits used in ineffective treatments against Y139C resistant rats in the Münsterland. These results should be considered when making decisions about the use of anticoagulant against resistant Norway rats and their potential environmental impacts.