918 resultados para Neuronal oscillations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

While analysis and interpretation of structural epileptogenic lesion is an essential task for the neuroradiologist in clinical practice, a substantial body of epilepsy research has shown that focal lesions influence brain areas beyond the epileptogenic lesion, across ensembles of functionally and anatomically connected brain areas. In this review article, we aim to provide an overview about altered network compositions in epilepsy, as measured with current advanced neuroimaging techniques to characterize the initiation and spread of epileptic activity in the brain with multimodal noninvasive imaging techniques. We focus on resting-state functional magnetic resonance imaging (MRI) and simultaneous electroencephalography/fMRI, and oppose the findings in idiopathic generalized versus focal epilepsies. These data indicate that circumscribed epileptogenic lesions can have extended effects on many brain systems. Although epileptic seizures may involve various brain areas, seizure activity does not spread diffusely throughout the brain but propagates along specific anatomic pathways that characterize the underlying epilepsy syndrome. Such a functionally oriented approach may help to better understand a range of clinical phenomena such as the type of cognitive impairment, the development of pharmacoresistance, the propagation pathways of seizures, or the success of epilepsy surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calmodulin (CaM) is a ubiquitous Ca(2+) buffer and second messenger that affects cellular function as diverse as cardiac excitability, synaptic plasticity, and gene transcription. In CA1 pyramidal neurons, CaM regulates two opposing Ca(2+)-dependent processes that underlie memory formation: long-term potentiation (LTP) and long-term depression (LTD). Induction of LTP and LTD require activation of Ca(2+)-CaM-dependent enzymes: Ca(2+)/CaM-dependent kinase II (CaMKII) and calcineurin, respectively. Yet, it remains unclear as to how Ca(2+) and CaM produce these two opposing effects, LTP and LTD. CaM binds 4 Ca(2+) ions: two in its N-terminal lobe and two in its C-terminal lobe. Experimental studies have shown that the N- and C-terminal lobes of CaM have different binding kinetics toward Ca(2+) and its downstream targets. This may suggest that each lobe of CaM differentially responds to Ca(2+) signal patterns. Here, we use a novel event-driven particle-based Monte Carlo simulation and statistical point pattern analysis to explore the spatial and temporal dynamics of lobe-specific Ca(2+)-CaM interaction at the single molecule level. We show that the N-lobe of CaM, but not the C-lobe, exhibits a nano-scale domain of activation that is highly sensitive to the location of Ca(2+) channels, and to the microscopic injection rate of Ca(2+) ions. We also demonstrate that Ca(2+) saturation takes place via two different pathways depending on the Ca(2+) injection rate, one dominated by the N-terminal lobe, and the other one by the C-terminal lobe. Taken together, these results suggest that the two lobes of CaM function as distinct Ca(2+) sensors that can differentially transduce Ca(2+) influx to downstream targets. We discuss a possible role of the N-terminal lobe-specific Ca(2+)-CaM nano-domain in CaMKII activation required for the induction of synaptic plasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Longitudinal in vivo proton magnetic resonance spectroscopy (1H-MRS) and immunohistochemistry were performed to investigate the tissue degeneration in traumatically injured rat spinal cord rostral and caudal to the lesion epicenter. On 1H-MRS significant decreases in N-acetyl aspartate (NAA) and total creatine (Cr) levels in the rostral, epicenter, and caudal segments were observed by 14 days, and levels remained depressed up to 56 days post-injury (PI). In contrast, the total choline (Cho) levels increased significantly in all three segments by 14 days PI, but recovered in the epicenter and caudal, but not the rostral region, at 56 days PI. Immunohistochemistry demonstrated neuronal cell death in the gray matter, and reactive astrocytes and axonal degeneration in the dorsal, lateral, and ventral white-matter columns. These results suggest delayed tissue degeneration in regions both rostrally and caudally from the epicenter in the injured spinal cord tissue. A rostral-caudal asymmetry in tissue recovery was seen both on MRI-observed hyperintense lesion volume and the Cho, but not NAA and Cr, levels at 56 days PI. These studies suggest that dynamic metabolic changes take place in regions away from the epicenter in injured spinal cord.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alzheimer's disease (AD) is characterized by the cerebral accumulation of misfolded and aggregated amyloid-beta protein (Abeta). Disease symptoms can be alleviated, in vitro and in vivo, by 'beta-sheet breaker' pentapeptides that reduce plaque load. However the peptide nature of these compounds, made them biologically unstable and unable to penetrate membranes with high efficiency. The main goal of this study was to use computational methods to identify small molecule mimetics with better drug-like properties. For this purpose, the docked conformations of the active peptides were used to identify compounds with similar activities. A series of related beta-sheet breaker peptides were docked to solid state NMR structures of a fibrillar form of Abeta. The lowest energy conformations of the active peptides were used to design three dimensional (3D)-pharmacophores, suitable for screening the NCI database with Unity. Small molecular weight compounds with physicochemical features and a conformation similar to the active peptides were selected, ranked by docking and biochemical parameters. Of 16 diverse compounds selected for experimental screening, 2 prevented and reversed Abeta aggregation at 2-3microM concentration, as measured by Thioflavin T (ThT) fluorescence and ELISA assays. They also prevented the toxic effects of aggregated Abeta on neuroblastoma cells. Their low molecular weight and aqueous solubility makes them promising lead compounds for treating AD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A first result of the search for ν ( )μ( ) → ν ( )e( ) oscillations in the OPERA experiment, located at the Gran Sasso Underground Laboratory, is presented. The experiment looked for the appearance of ν ( )e( ) in the CNGS neutrino beam using the data collected in 2008 and 2009. Data are compatible with the non-oscillation hypothesis in the three-flavour mixing model. A further analysis of the same data constrains the non-standard oscillation parameters θ (new) and suggested by the LSND and MiniBooNE experiments. For large values (>0.1 eV(2)), the OPERA 90% C.L. upper limit on sin(2)(2θ (new)) based on a Bayesian statistical method reaches the value 7.2 × 10(−3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early diagnosis of Parkinson's disease (PD) is required to improve therapeutic responses. Indeed, a clinical diagnosis of resting tremor, rigidity, movement and postural deficiencies usually reflect >50% loss of the nigrostriatal system in disease. In a step to address this, quantitative diffusion tensor magnetic resonance imaging (DTI) was used to assess nigrostriatal degeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication model of dopaminergic nigral degeneration. We now demonstrate increased average diffusion (p<0.005) and decreased fractional anisotropy (p<0.03) in the substantia nigra (SN) of 5- to 7-day MPTP-treated animals when compared to saline controls. Transverse diffusivity demonstrated the most significant differences (p < or = 0.002) and correlated with the numbers of SN dopaminergic neurons (r=-0.75, p=0.012). No differences were found in the striatum, corpus callosum, cerebral cortex, or ventricles. These results demonstrate that DTI may be used as a surrogate biomarker of nigral dopaminergic neuronal degeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurons and their precursor cells are formed in different regions within the developing CNS, but they migrate and occupy very specific sites in the mature CNS. The ultimate position of neurons is crucial for establishing proper synaptic connectivity in the brain. In Drosophila, despite its extensive use as a model system to study neurogenesis, we know almost nothing about neuronal migration or its regulation. In this paper, I show that one of the most studied neuronal pairs in the Drosophila nerve cord, RP2/sib, has a complicated migratory route. Based on my studies on Wingless (Wg) signaling, I report that the neuronal migratory pattern is determined at the precursor cell stage level. The results show that Wg activity in the precursor neuroectodermal and neuroblast levels specify neuronal migratory pattern two divisions later, thus, well ahead of the actual migratory event. Moreover, at least two downstream genes, Cut and Zfh1, are involved in this process but their role is at the downstream neuronal level. The functional importance of normal neuronal migration and the requirement of Wg signaling for the process are indicated by the finding that mislocated RP2 neurons in embryos mutant for Wg-signaling fail to properly send out their axon projection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two distinct classes of neurons have been examined in the nervous system of Aplysia. The membrane properties of these neurons are regulated by intracellular signalling molecules in both a short-term and a long-term fashion.^ The role of the phosphatidylinositol cycle in the control of neuronal properties was studied in a class of bursting pacemaker cells, the left upper-quadrant bursting neurons (cells L2, L3, L4, and L6) of the abdominal ganglion of Aplysia. These cells display a regular burst-firing pattern that is controlled by cyclic changes of intracellular Ca$\sp{2+}$ that occur during the bursting rhythm. The characteristic bursting pattern of these neurons occurs within a range of membrane potentials ($-35$ to $-50$ mV) called the pacemaker range. Intracellular pressure injection of inositol 1,4,5-trisphosphate (IP$\sb3$) altered the bursting rhythm of the bursting cells. Injection of IP$\sb3$ induced a brief depolarization that was followed by a long-lasting (2-15 min) hyperpolarization. When cells were voltage-clamped at potentials within the pacemaker range, injection of IP$\sb3$ generally induced a biphasic response that had a total duration of 2-15 min. An initial inward shift in holding current (I$\sb{\rm in}$), which lasted 5-120 sec, was followed by a slow outward shift in holding current (I$\sb{\rm out}$). At membrane potentials more negative than $-40$ mV, I$\sb{\rm in}$ was associated with a small and relatively voltage-independent increase in membrane conductance. I$\sb{\rm in}$ was not blocked by bath application of TTX or Co$\sp{2+}$. Although I$\sb{\rm in}$ was activated by injection of IP$\sb3$, it was not blocked by iontophoretic injection of ethyleneglycol-bis-(beta-aminoethyl ether), N, N$\sp\prime$-tetraacetic acid (EGTA) sufficient to block the Ca$\sp{2+}$-activated inward tail current (I$\sb{\rm B}$).^ Long-term (lasting at least 24 hours) effects of adenylate cyclase activation were examined in a well characterized class of mechanosensory neurons in Aplysia. The injected cells were analyzed 24 hours later by two-electrode voltage-clamp techniques. We found that K$\sp+$ currents of these cells were reduced 24 hours after injection of cAMP. The currents that were reduced by cAMP were very similar to those found to be reduced 24 hours after behavioral sensitization. These results suggest that cAMP is part of the intracellular signal that induces long-term sensitization in Aplysia. (Abstract shortened with permission of author.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the central goals of neuroscience research is to determine how networks of neurons control and modify behavior. One of the most influential model systems for this kind of analysis is the siphon and gill withdrawal reflex of the marine mollusc A. californica. In response to tactile stimulation, the siphon displays 3 different responses: (1) a posterior pointing and leveling (flaring) of the siphon in response to tail stimulation (the siphon T response), (2) constriction and anterior pointing to head stimulation (the siphon H response) and (3) constriction and withdrawal between the animal's parapodia (the siphon S response). The siphon S response is pseudoconditioned by a noxious tail stimulus to resemble the siphon T response. Behavioral and combined behavioral/intracellular studies were conducted to determine the motor neuronal control of these behaviors and to search for mechanisms of siphon response transformation following pseudoconditioning. The present studies have found that the flaring component of pseudoconditioned siphon S responses occurs during mantle pumping (MP) triggered by noxious tail stimulation. Siphon stimulation also triggers MP, as recorded in neurons of the Interneuron II pattern generator which commands MP. The 4 LF$\rm\sb{SB}$ siphon motor neurons (SMNs) were found necessary and sufficient for the siphon T response, while SMNs RD$\rm\sb S$ and LD$\rm\sb{S1}$ were found necessary and sufficient for the siphon H response. Following pseudoconditioning, there is an increase in the number of evoked spikes to the test stimulus for the LF$\rm\sb{SB}$ cells and a decreased number for RD$\rm\sb S.$ Siphon flaring occurring during the pseudoconditioned response correlates with increased LF$\rm\sb{SB}$ activity during triggered MP cycles. This suggests that psuedoconditioning is in part due to reconfiguration of the motor outputs of the Interneuron II network. These results suggest that these defensive responses are controlled and patterned by a well-defined, finite set of motor neurons and interneurons (Interneuron II) that are dedicated to specific behavioral functions, but also have parallel distributed properties. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactive oxygen intermediates (ROI) contribute to neuronal injury in cerebral ischemia and trauma. In this study we explored the role of ROI in bacterial meningitis. Meningitis caused by group B streptococci in infant rats led to two distinct forms of neuronal injury, areas of necrosis in the cortex and neuronal loss in the dentate gyrus of the hippocampus, the latter showing evidence for apoptosis. Staining of brain sections with diaminobenzidine after perfusion with manganese buffer and measurement of lipid peroxidation products in brain homogenates both provided evidence that meningitis led to the generation of ROI. Treatment with the radical scavenger alpha-phenyl-tert-butyl nitrone (PBN) (100 mg/kg q8h i.p.) beginning at the time of infection completely abolished ROI detection and the increase in lipidperoxidation. Cerebral cortical perfusion was reduced in animals with meningitis to 37.5+/-21.0% of uninfected controls (P < 0.05), and PBN restored cortical perfusion to 72.0+/-8.1% of controls (P < 0.05 vs meningitis). PBN also completely prevented neuronal injury in the cortex and hippocampus, when started at the time of infection (P < 0.02), and significantly reduced both forms of injury, when started 18 h after infection together with antibiotics (P < 0.004 for cortex and P < 0.001 for hippocampus). These data indicate that the generation of ROI is a major contributor to cerebral ischemia and necrotic and apoptotic neuronal injury in this model of neonatal meningitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A first result of the search for nu(mu)->nu(e) oscillations in the OPERA experiment, located at the Gran Sasso Underground Laboratory, is presented. The experiment looked for the appearance of nu(e) in the CNGS neutrino beam using the data collected in 2008 and 2009. Data are compatible with the non-oscillation hypothesis in the three-flavour mixing model. A further analysis of the same data constrains the non-standard oscillation parameters theta(new) and Delta m(new)(2) suggested by the LSND and MiniBooNE experiments. For large Delta m(new)(2) values (>0.1 eV(2)), the OPERA 90% C.L. upper limit on sin(2)(2 theta(new)) based on a Bayesian statistical method reaches the value 7.2 x 10(-3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The uptake of silica (Si) and gold (Au) nanoparticles (NPs) engineered for laser-tissue soldering in the brain was investigated using microglial cells and undifferentiated and differentiated SH-SY5Y cells. It is not known what effects NPs elicit once entering the brain. Cellular uptake, cytotoxicity, apoptosis, and the potential induction of oxidative stress by means of depletion of glutathione levels were determined after NP exposure at concentrations of 10(3) and 10(9)NPs/ml. Au-, silica poly (ε-caprolactone) (Si-PCL-) and silica poly-L-lactide (Si-PLLA)-NPs were taken up by all cells investigated. Aggregates and single NPs were found in membrane-surrounded vacuoles and the cytoplasm, but not in the nucleus. Both NP concentrations investigated did not result in cytotoxicity or apoptosis, but reduced glutathione (GSH) levels predominantly at 6 and 24h, but not after 12 h of NP exposure in the microglial cells. NP exposure-induced GSH depletion was concentration-dependent in both cell lines. Si-PCL-NPs induced the strongest effect of GSH depletion followed by Si-PLLA-NPs and Au-NPs. NP size seems to be an important characteristic for this effect. Overall, Au-NPs are most promising for laser-assisted vascular soldering in the brain. Further studies are necessary to further evaluate possible effects of these NPs in neuronal cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present article gives a survey over the current scientific knowledge of the canine neuronal ceroid-lipofuscinosis (NCL). NCL is a heterogenous group of lysosomal storage diseases in humans and animals. In consequence of a gene mutation, there is an accumulation of ceroid-lipofuscin in neurons, cells of the retina and the skin and other cells. The stored ceroid-lipofuscin in neurons leads to an impaired cell function and subsequently to cell death. Recently, the underlying genetic defect was discovered in several dog breeds. Genetic testing permits an ante mortem diagnosis of the disease, which up to now was only possible with a positive biopsy result. Another advantage is the identification of carrier animals to eliminate the deleterious alleles.