881 resultados para Nanostructured WO3
Resumo:
We demonstrate that interferometric lithography provides a fast, simple approach to the production of patterns in self-assembled monolayers (SAMs) with high resolution over square centimeter areas. As a proof of principle, two-beam interference patterns, formed using light from a frequency-doubled argon ion laser (244 nm), were used to pattern methyl-terminated SAMs on gold, facilitating the introduction of hydroxyl-terminated adsorbates and yielding patterns of surface free energy with a pitch of ca. 200 nm. The photopatterning of SAMs on Pd has been demonstrated for the first time, with interferometric exposure yielding patterns of surface free energy with similar features sizes to those obtained on gold. Gold nanostructures were formed by exposing SAMs to UV interference patterns and then immersing the samples in an ethanolic solution of mercaptoethylamine, which etched the metal substrate in exposed areas while unoxidized thiols acted as a resist and protected the metal from dissolution. Macroscopically extended gold nanowires were fabricated using single exposures and arrays of 66 nm gold dots at 180 nm centers were formed using orthogonal exposures in a fast, simple process. Exposure of oligo(ethylene glycol)-terminated SAMs to UV light caused photodegradation of the protein-resistant tail groups in a substrate-independent process. In contrast to many protein patterning methods, which utilize multiple steps to control surface binding, this single step process introduced aldehyde functional groups to the SAM surface at exposures as low as 0.3 J cm(-2), significantly less than the exposure required for oxidation of the thiol headgroup. Although interferometric methods rely upon a continuous gradient of exposure, it was possible to fabricate well-defined protein nanostructures by the introduction of aldehyde groups and removal of protein resistance in nanoscopic regions. Macroscopically extended, nanostructured assemblies of streptavidin were formed. Retention of functionality in the patterned materials was demonstrated by binding of biotinylated proteins.
Resumo:
An overview on processes that are relevant in light-induced fuel generation, such as water photoelectrolysis or carbon dioxide reduction, is given. Considered processes encompass the photophysics of light absorption, excitation energy transfer to catalytically active sites and interfacial reactions at the catalyst/solution phase boundary. The two major routes envisaged for realization of photoelectrocatalytic systems, e.g. bio-inspired single photon catalysis and multiple photon inorganic or hybrid tandem cells, are outlined. For development of efficient tandem cell structures that are based on non-oxidic semiconductors, stabilization strategies are presented. Physical surface passivation is described using the recently introduced nanoemitter concept which is also applicable in photovoltaic (solid state or electrochemical) solar cells and first results with p-Si and p-InP thin films are presented. Solar-to-hydrogen efficiencies reach 12.1% for homoepitaxial InP thin films covered with Rh nanoislands. In the pursuit to develop biologically inspired systems, enzyme adsorption onto electrochemically nanostructured silicon surfaces is presented and tapping mode atomic force microscopy images of heterodimeric enzymes are shown. An outlook towards future envisaged systems is given. © 2010 The Royal Society of Chemistry.
Resumo:
Nonlinear optical transmission through periodically nanostructured metal films (surface-plasmon polaritonic crystals) has been studied. The surface polaritonic crystals have been coated with a nonlinear polymer. The optical transmission of such nanostructures has been shown to depend on the control-light illumination conditions. The resonant transmission exhibits bistable behavior with the control-light intensity. The bistability is different at different resonant signal wavelengths and for different wavelengths of the control light. The effect is explained by the strong sensitivity of the surface-plasmon mode resonances at the signal wavelength to the surrounding dielectric environment and the electromagnetic field enhancement due to plasmonic excitations at the controlled light wavelengths.
Resumo:
A conventional thin film capacitor heterostructure, consisting of sol-gel deposited lead zirconium titanate (PZT) layers with sputtered platinum top and bottom electrodes, was subjected to fatiguing pulses at a variety of frequencies. The fatigue characteristics were compared to those of a similarly processed capacitor in which a ~20nm tungsten trioxide layer had been deposited, using pulsed laser deposition, between the ferroelectric and upper electrode. The expectation was that, because of its ability to accommodate considerable oxygen non-stoichiometry, tungsten trioxide (WO3) might act as an efficient sink for any oxygen vacancies flushed to the electrode-ferroelectric boundary layer during repetitive switching, and hence would improve the fatigue characteristics of the thin film capacitor. However, it was found that, in general, the addition of tungsten trioxide actually increases the rate of fatigue. It appears that any potential benefit from the WO3, in terms of absorbing oxygen vacancies, is far outweighed by it causing dramatically increased charge injection in the system.
Resumo:
Gas-phase photocatalysis of 1,4-dichlorobut-2-enes and 3,4-dichlorobut-1-ene (DCB) has been studied using TiO2 and 3%WO3/TiO2 supported on SiO2. DCB was found to oxidize efficiently over these catalysts; however, only low rates of CO2 formation were observed. With these chlorinated hydrocarbons, the catalysts were found to deactivate over time, probably via the formation of aldol condensation products of chloroacetaldehyde, which is the predominant intermediate observed. The variation in rate and selectivity of the oxidation reactions with O-2 concentration is reported and a mechanism is proposed. Using isotope ratio mass spectrometry, the initial step for the DCB removal has been shown not to be a carbon bond cleavage but is likely to be hydroxyl radical addition to the carbon-carbon double bond.
Resumo:
It has been shown that a femtosecond plasma of cluster targets is an almost isotropic source of fast ions and, hence, can be used to obtain ionographic images with a wide field of view. The spatial resolution of the resulting ionographic images is no worse than 600 nm, which corresponds to a uniquely high value of about 105 of the ratio of the field of view to the resolution. The use of 100–300-keV ion fluxes ensures the sensitivity of the method to the sample thickness of no worse than 100 nm even for samples consisting of light chemical elements (C, H). The proposed method can be used to obtain images of low-contrast biological objects, thin films, membranes, and other nanostructured objects.
Resumo:
Label-free plasmonic biosensors rely either on surface plasmon polaritons or on localized surface plasmons on continuous or nanostructured noble-metal surfaces to detect molecular-binding events(1-4). Despite undisputed advantages, including spectral tunability(3), strong enhancement of the local electric field(5,6) and much better adaptability to modern nanobiotechnology architectures(7), localized plasmons demonstrate orders of magnitude lower sensitivity compared with their guided counterparts(3). Here, we demonstrate an improvement in biosensing technology using a plasmonic metamaterial that is capable of supporting a guided mode in a porous nanorod layer. Benefiting from a substantial overlap between the probing field and the active biological substance incorporated between the nanorods and a strong plasmon-mediated energy confinement inside the layer, this metamaterial provides an enhanced sensitivity to refractive-index variations of the medium between the rods (more than 30,000nm per refractive-index unit). We demonstrate the feasibility of our approach using a standard streptavidin-biotin affinity model and record considerable improvement in the detection limit of small analytes compared with conventional label-free plasmonic devices.
Resumo:
The enhanced optical properties of metal films periodically perforated with an array of sub-wavelength size holes have recently been widely studied in the field of surface plasmon optics. The ability to design the optical transmission of such nanostructures, which act as plasmonic crystals, by varying their geometrical parameters gives them great flexibility for numerous applications in photonics, opto-electronics, and sensing. Transforming these passive optical elements into devices that may be actively controlled has presented a new challenge. Here, we report on the realization of an electrically controlled nanostructured optical system based on the unique properties of surface plasmon polaritonic crystals in contact with a liquid crystal (LC) layer. We discuss the effect of LC layer modulation on the surface plasmon dispersion, the related optical transmission and the underlying mechanism. The reported effect may be used to achieve active spectral tuneability and switching in a wide range of applications.
Resumo:
Acidification of an isopropanol solution containing mixtures of [Ti(OPri)(4)] and [W(OEt)(5)] produced solutions from which various TiO2, WO3 and TiO2/WO3 thin films could be obtained by dip coating and annealing. The films were analysed by X-ray diffraction, SEM/EDAX, Raman, electronic spectra, contact angle and photoactivity with respect to destruction of an over layer of stearic acid. The TiO2/WO3 films were shown to be mixtures of two phases TiO2 and WO3 rather than a solid solution TixWyO2. The 2% tungsten oxide doped titania films were shown to be the most effective photocatalysts. All of the TiO2 and TiO2/WO3 films showed light induced superhydrophillicity. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We present here a detailed study of the complex relationship between the electromagnetic near-field and far-field responses of "real" nanostructured metallic surfaces. The near-field and far-field responses are specified in terms of (spectra of) the surface-enhanced Raman-scattering enhancement factor (SERS EF) and optical extinction, respectively. First, it is shown that gold nanorod- and nanotube-array substrates exhibit three distinct localized surface plasmon resonances (LSPRs): a longitudinal, a transverse, and a cavity mode. The cavity mode simultaneously has the largest impact on the near-field behavior (as observed through the SERS EF) and the weakest optical interaction: It has a "near-field-type" character. The transverse and longitudinal modes have a significant impact on the far-field behavior but very little impact on SERS: They have a "far-field-type" character. We confirm the presence of the cavity mode using a combination of SERS EF spectra, electron microscopy, and electromagnetic modeling and thus clearly illustrate and explain the (lack of) correlation between the SERS EF spectra and the optical response in terms of the contrasting character of the three LSPRs. In doing so, we experimentally demonstrate that, for a surface that supports multiple LSPRs, the near-field and far-field properties can in fact be tuned almost independently. It is further demonstrated that small changes in geometrical parameters that tune the spectral location of the LPSRs can also drastically influence the character of these modes, resulting in certain unusual behavior, such as the far-field resonance redshift as the near-field resonance blueshifts. DOI: 10.1103/PhysRevX.3.011001
Resumo:
A series of nanostructured Ni-Zn ferrites Ni1-xZnxFe2O4 (x=0, 0.5 and 1) with a grain size from 24 to 65 nm have been prepared with a sol-gel method. The effect of composition and sintering temperature on morphology, magnetic properties, Curie temperature, specific heating rate at 295 kHz and hysteresis loss have been studied. The highest coercivity of 50 and 40 Oe, were obtained for NiFe2O4 and Ni0.5Zn0.5Fe2O4 samples with the grain size of 35 and 29 nm, respectively. The coercivity of Ni and Ni-Zn mixed ferrites decreased with temperature. The Bloch exponent was 1.5 for all samples. As the grain size increased, the Curie temperature of NiFe2O4 increased from 849 to 859 K. The highest saturation magnetization of 70 emu/g at 298 K and the highest specific heating rate of 1.6 K/s under radiofrequency heating at 295 kHz were observed over NiFe2O4 calcined at 1073 K. Both the magnitude of the hysteresis loss and the temperature dependence of the loss are influenced by the sintering temperature and composition.