998 resultados para NIH-CPSI
Resumo:
High-efficiency collection of photons emitted by a point source over a wide field of view (FoV) is crucial for many applications. Multiscale optics offer improved light collection by utilizing small optical components placed close to the optical source, while maintaining a wide FoV provided by conventional imaging optics. In this work, we demonstrate collection efficiency of 26% of photons emitted by a pointlike source using a micromirror fabricated in silicon with no significant decrease in collection efficiency over a 10 mm object space.
Resumo:
A thin-film InGaAs/GaAs edge-emitting single-quantum-well laser has been integrated with a tapered multimode SU-8 waveguide onto an Si substrate. The SU-8 waveguide is passively aligned to the laser using mask-based photolithography, mimicking electrical interconnection in Si complementary metal-oxide semiconductor, and overlaps one facet of the thin-film laser for coupling power from the laser to the waveguide. Injected threshold current densities of 260A/cm(2) are measured with the reduced reflectivity of the embedded laser facet while improving single mode coupling efficiency, which is theoretically simulated to be 77%.
Resumo:
We present a quantitative phase microscopy method that uses a Bayer mosaic color camera to simultaneously acquire off-axis interferograms in transmission mode at two distinct wavelengths. Wrapped phase information is processed using a two-wavelength algorithm to extend the range of the optical path delay measurements that can be detected using a single temporal acquisition. We experimentally demonstrate this technique by acquiring the phase profiles of optically clear microstructures without 2pi ambiguities. In addition, the phase noise contribution arising from spectral channel crosstalk on the color camera is quantified.
Resumo:
We present an analytical method that yields the real and imaginary parts of the refractive index (RI) from low-coherence interferometry measurements, leading to the separation of the scattering and absorption coefficients of turbid samples. The imaginary RI is measured using time-frequency analysis, with the real part obtained by analyzing the nonlinear phase induced by a sample. A derivation relating the real part of the RI to the nonlinear phase term of the signal is presented, along with measurements from scattering and nonscattering samples that exhibit absorption due to hemoglobin.
Resumo:
We present measurements of morphological features in a thick turbid sample using light-scattering spectroscopy (LSS) and Fourier-domain low-coherence interferometry (fLCI) by processing with the dual-window (DW) method. A parallel frequency domain optical coherence tomography (OCT) system with a white-light source is used to image a two-layer phantom containing polystyrene beads of diameters 4.00 and 6.98 mum on the top and bottom layers, respectively. The DW method decomposes each OCT A-scan into a time-frequency distribution with simultaneously high spectral and spatial resolution. The spectral information from localized regions in the sample is used to determine scatterer structure. The results show that the two scatterer populations can be differentiated using LSS and fLCI.
Resumo:
The radiation loss in the escaping light cone with a two-dimensional (2D) photonic crystal slab microcavity can be suppressed by means of cladding the low-Q slab microcavity by three-dimensional woodpile photonic crystals with the complete bandgap when the resonance frequency is located inside the complete bandgap. It is confirmed that the hybrid microcavity based on a low-Q, single-defect photonic crystal slab microcavity shows improvement of the Q factor without affecting the mode volume and modal frequency. Whereas 2D slab microcavities exhibit Q saturation with an increase in the number of layers, for the analyzed hybrid microcavities with a small gap between the slab and woodpiles, the Q factor does not saturate.
Resumo:
We demonstrate in vivo human retinal imaging using an intraoperative microscope-mounted optical coherence tomography system (MMOCT). Our optomechanical design adapts an Oculus Binocular Indirect Ophthalmo Microscope (BIOM3), suspended from a Leica ophthalmic surgical microscope, with spectral domain optical coherence tomography (SD-OCT) scanning and relay optics. The MMOCT enables wide-field noncontact real-time cross-sectional imaging of retinal structure, allowing for SD-OCT augmented intrasurgical microscopy for intraocular visualization. We experimentally quantify the axial and lateral resolution of the MMOCT and demonstrate fundus imaging at a 20Hz frame rate.
Resumo:
Previous studies have shown that the isoplanatic distortion due to turbulence and the image of a remote object may be jointly estimated from the 4D mutual intensity across an aperture. This Letter shows that decompressive inference on a 2D slice of the 4D mutual intensity, as measured by a rotational shear interferometer, is sufficient for estimation of sparse objects imaged through turbulence. The 2D slice is processed using an iterative algorithm that alternates between estimating the sparse objects and estimating the turbulence-induced phase screen. This approach may enable new systems that infer object properties through turbulence without exhaustive sampling of coherence functions.
Resumo:
We present a fiber-optic interferometric system for measuring depth-resolved scattering in two angular dimensions using Fourier-domain low-coherence interferometry. The system is a unique hybrid of the Michelson and Sagnac interferometer topologies. The collection arm of the interferometer is scanned in two dimensions to detect angular scattering from the sample, which can then be analyzed to determine the structure of the scatterers. A key feature of the system is the full control of polarization of both the illumination and the collection fields, allowing for polarization-sensitive detection, which is essential for two-dimensional angular measurements. System performance is demonstrated using a double-layer microsphere phantom. Experimental data from samples with different sizes and acquired with different polarizations show excellent agreement with Mie theory, producing structural measurements with subwavelength accuracy.
Resumo:
The affective impact of music arises from a variety of factors, including intensity, tempo, rhythm, and tonal relationships. The emotional coloring evoked by intensity, tempo, and rhythm appears to arise from association with the characteristics of human behavior in the corresponding condition; however, how and why particular tonal relationships in music convey distinct emotional effects are not clear. The hypothesis examined here is that major and minor tone collections elicit different affective reactions because their spectra are similar to the spectra of voiced speech uttered in different emotional states. To evaluate this possibility the spectra of the intervals that distinguish major and minor music were compared to the spectra of voiced segments in excited and subdued speech using fundamental frequency and frequency ratios as measures. Consistent with the hypothesis, the spectra of major intervals are more similar to spectra found in excited speech, whereas the spectra of particular minor intervals are more similar to the spectra of subdued speech. These results suggest that the characteristic affective impact of major and minor tone collections arises from associations routinely made between particular musical intervals and voiced speech.
Resumo:
The goal of this work is to analyze three-dimensional dispersive metallic photonic crystals (PCs) and to find a structure that can provide a bandgap and a high cutoff frequency. The determination of the band structure of a PC with dispersive materials is an expensive nonlinear eigenvalue problem; in this work we propose a rational-polynomial method to convert such a nonlinear eigenvalue problem into a linear eigenvalue problem. The spectral element method is extended to rapidly calculate the band structure of three-dimensional PCs consisting of realistic dispersive materials modeled by Drude and Drude-Lorentz models. Exponential convergence is observed in the numerical experiments. Numerical results show that, at the low frequency limit, metallic materials are similar to a perfect electric conductor, where the simulation results tend to be the same as perfect electric conductor PCs. Band structures of the scaffold structure and semi-woodpile structure metallic PCs are investigated. It is found that band structures of semi-woodpile PCs have a very high cutoff frequency as well as a bandgap between the lowest two bands and the higher bands.
Resumo:
We have developed an alternative approach to optical design which operates in the analytical domain so that an optical designer works directly with rays as analytical functions of system parameters rather than as discretely sampled polylines. This is made possible by a generalization of the proximate ray tracing technique which obtains the analytical dependence of the rays at the image surface (and ray path lengths at the exit pupil) on each system parameter. The resulting method provides an alternative direction from which to approach system optimization and supplies information which is not typically available to the system designer. In addition, we have further expanded the procedure to allow asymmetric systems and arbitrary order of approximation, and have illustrated the performance of the method through three lens design examples.
Resumo:
As many as 20-70% of patients undergoing breast conserving surgery require repeat surgeries due to a close or positive surgical margin diagnosed post-operatively [1]. Currently there are no widely accepted tools for intra-operative margin assessment which is a significant unmet clinical need. Our group has developed a first-generation optical visible spectral imaging platform to image the molecular composition of breast tumor margins and has tested it clinically in 48 patients in a previously published study [2]. The goal of this paper is to report on the performance metrics of the system and compare it to clinical criteria for intra-operative tumor margin assessment. The system was found to have an average signal to noise ratio (SNR) >100 and <15% error in the extraction of optical properties indicating that there is sufficient SNR to leverage the differences in optical properties between negative and close/positive margins. The probe had a sensing depth of 0.5-2.2 mm over the wavelength range of 450-600 nm which is consistent with the pathologic criterion for clear margins of 0-2 mm. There was <1% cross-talk between adjacent channels of the multi-channel probe which shows that multiple sites can be measured simultaneously with negligible cross-talk between adjacent sites. Lastly, the system and measurement procedure were found to be reproducible when evaluated with repeated measures, with a low coefficient of variation (<0.11). The only aspect of the system not optimized for intra-operative use was the imaging time. The manuscript includes a discussion of how the speed of the system can be improved to work within the time constraints of an intra-operative setting.
Resumo:
Segmentation of anatomical and pathological structures in ophthalmic images is crucial for the diagnosis and study of ocular diseases. However, manual segmentation is often a time-consuming and subjective process. This paper presents an automatic approach for segmenting retinal layers in Spectral Domain Optical Coherence Tomography images using graph theory and dynamic programming. Results show that this method accurately segments eight retinal layer boundaries in normal adult eyes more closely to an expert grader as compared to a second expert grader.
Resumo:
The ability of diffuse reflectance spectroscopy to extract quantitative biological composition of tissues has been used to discern tissue types in both pre-clinical and clinical cancer studies. Typically, diffuse reflectance spectroscopy systems are designed for single-point measurements. Clinically, an imaging system would provide valuable spatial information on tissue composition. While it is feasible to build a multiplexed fiber-optic probe based spectral imaging system, these systems suffer from drawbacks with respect to cost and size. To address these we developed a compact and low cost system using a broadband light source with an 8-slot filter wheel for illumination and silicon photodiodes for detection. The spectral imaging system was tested on a set of tissue mimicking liquid phantoms which yielded an optical property extraction accuracy of 6.40 +/- 7.78% for the absorption coefficient (micro(a)) and 11.37 +/- 19.62% for the wavelength-averaged reduced scattering coefficient (micro(s)').