829 resultados para NETWORK MODEL
Resumo:
This paper defines a structured methodology which is based on the foundational work of Al-Shaer et al. in [1] and that of Hamed and Al-Shaer in [2]. It defines a methodology for the declaration of policy field elements, through to the syntax, ontology and functional verification stages. In their works of [1] and [2] the authors concentrated on developing formal definitions of possible anomalies between rules in a network firewall rule set. Their work is considered as the foundation for further works on anomaly detection, including those of Fitzgerald et al. [3], Chen et al. [4], Hu et al. [5], among others. This paper extends this work by applying the methods to information sharing policies, and outlines the evaluation related to these.
Resumo:
Whelan, K. E. and King, R. D. Using a logical model to predict the growth of yeast. BMC Bioinformatics 2008, 9:97
Resumo:
The Transmission Control Protocol (TCP) has been the protocol of choice for many Internet applications requiring reliable connections. The design of TCP has been challenged by the extension of connections over wireless links. We ask a fundamental question: What is the basic predictive power of TCP of network state, including wireless error conditions? The goal is to improve or readily exploit this predictive power to enable TCP (or variants) to perform well in generalized network settings. To that end, we use Maximum Likelihood Ratio tests to evaluate TCP as a detector/estimator. We quantify how well network state can be estimated, given network response such as distributions of packet delays or TCP throughput that are conditioned on the type of packet loss. Using our model-based approach and extensive simulations, we demonstrate that congestion-induced losses and losses due to wireless transmission errors produce sufficiently different statistics upon which an efficient detector can be built; distributions of network loads can provide effective means for estimating packet loss type; and packet delay is a better signal of network state than short-term throughput. We demonstrate how estimation accuracy is influenced by different proportions of congestion versus wireless losses and penalties on incorrect estimation.
Resumo:
The development and deployment of distributed network-aware applications and services over the Internet require the ability to compile and maintain a model of the underlying network resources with respect to (one or more) characteristic properties of interest. To be manageable, such models must be compact, and must enable a representation of properties along temporal, spatial, and measurement resolution dimensions. In this paper, we propose a general framework for the construction of such metric-induced models using end-to-end measurements. We instantiate our approach using one such property, packet loss rates, and present an analytical framework for the characterization of Internet loss topologies. From the perspective of a server the loss topology is a logical tree rooted at the server with clients at its leaves, in which edges represent lossy paths between a pair of internal network nodes. We show how end-to-end unicast packet probing techniques could b e used to (1) infer a loss topology and (2) identify the loss rates of links in an existing loss topology. Correct, efficient inference of loss topology information enables new techniques for aggregate congestion control, QoS admission control, connection scheduling and mirror site selection. We report on simulation, implementation, and Internet deployment results that show the effectiveness of our approach and its robustness in terms of its accuracy and convergence over a wide range of network conditions.
Resumo:
Formal tools like finite-state model checkers have proven useful in verifying the correctness of systems of bounded size and for hardening single system components against arbitrary inputs. However, conventional applications of these techniques are not well suited to characterizing emergent behaviors of large compositions of processes. In this paper, we present a methodology by which arbitrarily large compositions of components can, if sufficient conditions are proven concerning properties of small compositions, be modeled and completely verified by performing formal verifications upon only a finite set of compositions. The sufficient conditions take the form of reductions, which are claims that particular sequences of components will be causally indistinguishable from other shorter sequences of components. We show how this methodology can be applied to a variety of network protocol applications, including two features of the HTTP protocol, a simple active networking applet, and a proposed web cache consistency algorithm. We also doing discuss its applicability to framing protocol design goals and to representing systems which employ non-model-checking verification methodologies. Finally, we briefly discuss how we hope to broaden this methodology to more general topological compositions of network applications.
Resumo:
Overlay networks have been used for adding and enhancing functionality to the end-users without requiring modifications in the Internet core mechanisms. Overlay networks have been used for a variety of popular applications including routing, file sharing, content distribution, and server deployment. Previous work has focused on devising practical neighbor selection heuristics under the assumption that users conform to a specific wiring protocol. This is not a valid assumption in highly decentralized systems like overlay networks. Overlay users may act selfishly and deviate from the default wiring protocols by utilizing knowledge they have about the network when selecting neighbors to improve the performance they receive from the overlay. This thesis goes against the conventional thinking that overlay users conform to a specific protocol. The contributions of this thesis are threefold. It provides a systematic evaluation of the design space of selfish neighbor selection strategies in real overlays, evaluates the performance of overlay networks that consist of users that select their neighbors selfishly, and examines the implications of selfish neighbor and server selection to overlay protocol design and service provisioning respectively. This thesis develops a game-theoretic framework that provides a unified approach to modeling Selfish Neighbor Selection (SNS) wiring procedures on behalf of selfish users. The model is general, and takes into consideration costs reflecting network latency and user preference profiles, the inherent directionality in overlay maintenance protocols, and connectivity constraints imposed on the system designer. Within this framework the notion of user’s "best response" wiring strategy is formalized as a k-median problem on asymmetric distance and is used to obtain overlay structures in which no node can re-wire to improve the performance it receives from the overlay. Evaluation results presented in this thesis indicate that selfish users can reap substantial performance benefits when connecting to overlay networks composed of non-selfish users. In addition, in overlays that are dominated by selfish users, the resulting stable wirings are optimized to such great extent that even non-selfish newcomers can extract near-optimal performance through naïve wiring strategies. To capitalize on the performance advantages of optimal neighbor selection strategies and the emergent global wirings that result, this thesis presents EGOIST: an SNS-inspired overlay network creation and maintenance routing system. Through an extensive measurement study on the deployed prototype, results presented in this thesis show that EGOIST’s neighbor selection primitives outperform existing heuristics on a variety of performance metrics, including delay, available bandwidth, and node utilization. Moreover, these results demonstrate that EGOIST is competitive with an optimal but unscalable full-mesh approach, remains highly effective under significant churn, is robust to cheating, and incurs minimal overheads. This thesis also studies selfish neighbor selection strategies for swarming applications. The main focus is on n-way broadcast applications where each of n overlay user wants to push its own distinct file to all other destinations as well as download their respective data files. Results presented in this thesis demonstrate that the performance of our swarming protocol for n-way broadcast on top of overlays of selfish users is far superior than the performance on top of existing overlays. In the context of service provisioning, this thesis examines the use of distributed approaches that enable a provider to determine the number and location of servers for optimal delivery of content or services to its selfish end-users. To leverage recent advances in virtualization technologies, this thesis develops and evaluates a distributed protocol to migrate servers based on end-users demand and only on local topological knowledge. Results under a range of network topologies and workloads suggest that the performance of the distributed deployment is comparable to that of the optimal but unscalable centralized deployment.
Resumo:
This paper proposes the use of in-network caches (which we call Angels) to reduce the Minimum Distribution Time (MDT) of a file from a seeder – a node that possesses the file – to a set of leechers – nodes who are interested in downloading the file. An Angel is not a leecher in the sense that it is not interested in receiving the entire file, but rather it is interested in minimizing the MDT to all leechers, and as such uses its storage and up/down-link capacity to cache and forward parts of the file to other peers. We extend the analytical results by Kumar and Ross [1] to account for the presence of angels by deriving a new lower bound for the MDT. We show that this newly derived lower bound is tight by proposing a distribution strategy under assumptions of a fluid model. We present a GroupTree heuristic that addresses the impracticalities of the fluid model. We evaluate our designs through simulations that show that our Group-Tree heuristic outperforms other heuristics, that it scales well with the increase of the number of leechers, and that it closely approaches the optimal theoretical bounds.
Resumo:
This thesis proposes the use of in-network caches (which we call Angels) to reduce the Minimum Distribution Time (MDT) of a file from a seeder – a node that possesses the file – to a set of leechers – nodes who are interested in downloading the file. An Angel is not a leecher in the sense that it is not interested in receiving the entire file, but rather it is interested in minimizing the MDT to all leechers, and as such uses its storage and up/down-link capacity to cache and forward parts of the file to other peers. We extend the analytical results by Kumar and Ross (Kumar and Ross, 2006) to account for the presence of angels by deriving a new lower bound for the MDT. We show that this newly derived lower bound is tight by proposing a distribution strategy under assumptions of a fluid model. We present a GroupTree heuristic that addresses the impracticalities of the fluid model. We evaluate our designs through simulations that show that our GroupTree heuristic outperforms other heuristics, that it scales well with the increase of the number of leechers, and that it closely approaches the optimal theoretical bounds.
Resumo:
A common assumption made in traffic matrix (TM) modeling and estimation is independence of a packet's network ingress and egress. We argue that in real IP networks, this assumption should not and does not hold. The fact that most traffic consists of two-way exchanges of packets means that traffic streams flowing in opposite directions at any point in the network are not independent. In this paper we propose a model for traffic matrices based on independence of connections rather than packets. We argue that the independent connection (IC) model is more intuitive, and has a more direct connection to underlying network phenomena than the gravity model. To validate the IC model, we show that it fits real data better than the gravity model and that it works well as a prior in the TM estimation problem. We study the model's parameters empirically and identify useful stability properties. This justifies the use of the simpler versions of the model for TM applications. To illustrate the utility of the model we focus on two such applications: synthetic TM generation and TM estimation. To the best of our knowledge this is the first traffic matrix model that incorporates properties of bidirectional traffic.
Resumo:
A model which extends the adaptive resonance theory model to sequential memory is presented. This new model learns sequences of events and recalls a sequence when presented with parts of the sequence. A sequence can have repeated events and different sequences can share events. The ART model is modified by creating interconnected sublayers within ART's F2 layer. Nodes within F2 learn temporal patterns by forming recency gradients within LTM. Versions of the ART model like ART I, ART 2, and fuzzy ART can be used.
Resumo:
A model for self-organization of the coordinate transformations required for spatial reaching is presented. During a motor babbling phase, a mapping from spatial coordinate directions to joint motion directions is learned. After learning, the model is able to produce straight-line spatial velocity trajectories with characteristic bell-shaped spatial velocity profiles, as observed in human reaches. Simulation results are presented for transverse plane reaching using a two degree-of-freedom arm.
Resumo:
This article introduces an unsupervised neural architecture for the control of a mobile robot. The system allows incremental learning of the plant during robot operation, with robust performance despite unexpected changes of robot parameters such as wheel radius and inter-wheel distance. The model combines Vector associative Map (VAM) learning and associate learning, enabling the robot to reach targets at arbitrary distances without knowledge of the robot kinematics and without trajectory recording, but relating wheel velocities with robot movements.
Resumo:
A neural model is presented of how cortical areas V1, V2, and V4 interact to convert a textured 2D image into a representation of curved 3D shape. Two basic problems are solved to achieve this: (1) Patterns of spatially discrete 2D texture elements are transformed into a spatially smooth surface representation of 3D shape. (2) Changes in the statistical properties of texture elements across space induce the perceived 3D shape of this surface representation. This is achieved in the model through multiple-scale filtering of a 2D image, followed by a cooperative-competitive grouping network that coherently binds texture elements into boundary webs at the appropriate depths using a scale-to-depth map and a subsequent depth competition stage. These boundary webs then gate filling-in of surface lightness signals in order to form a smooth 3D surface percept. The model quantitatively simulates challenging psychophysical data about perception of prolate ellipsoids (Todd and Akerstrom, 1987, J. Exp. Psych., 13, 242). In particular, the model represents a high degree of 3D curvature for a certain class of images, all of whose texture elements have the same degree of optical compression, in accordance with percepts of human observers. Simulations of 3D percepts of an elliptical cylinder, a slanted plane, and a photo of a golf ball are also presented.
Resumo:
A neural model is described of how adaptively timed reinforcement learning occurs. The adaptive timing circuit is suggested to exist in the hippocampus, and to involve convergence of dentate granule cells on CA3 pyramidal cells, and NMDA receptors. This circuit forms part of a model neural system for the coordinated control of recognition learning, reinforcement learning, and motor learning, whose properties clarify how an animal can learn to acquire a delayed reward. Behavioral and neural data are summarized in support of each processing stage of the system. The relevant anatomical sites are in thalamus, neocortex, hippocampus, hypothalamus, amygdala, and cerebellum. Cerebellar influences on motor learning are distinguished from hippocampal influences on adaptive timing of reinforcement learning. The model simulates how damage to the hippocampal formation disrupts adaptive timing, eliminates attentional blocking, and causes symptoms of medial temporal amnesia. It suggests how normal acquisition of subcortical emotional conditioning can occur after cortical ablation, even though extinction of emotional conditioning is retarded by cortical ablation. The model simulates how increasing the duration of an unconditioned stimulus increases the amplitude of emotional conditioning, but does not change adaptive timing; and how an increase in the intensity of a conditioned stimulus "speeds up the clock", but an increase in the intensity of an unconditioned stimulus does not. Computer simulations of the model fit parametric conditioning data, including a Weber law property and an inverted U property. Both primary and secondary adaptively timed conditioning are simulated, as are data concerning conditioning using multiple interstimulus intervals (ISIs), gradually or abruptly changing ISis, partial reinforcement, and multiple stimuli that lead to time-averaging of responses. Neurobiologically testable predictions are made to facilitate further tests of the model.
Resumo:
This thesis presents research theorising the use of social network sites (SNS) for the consumption of cultural goods. SNS are Internet-based applications that enable people to connect, interact, discover, and share user-generated content. They have transformed communication practices and are facilitating users to present their identity online through the disclosure of information on a profile. SNS are especially effective for propagating content far and wide within a network of connections. Cultural goods constitute hedonic experiential goods with cultural, artistic, and entertainment value, such as music, books, films, and fashion. Their consumption is culturally dependant and they have unique characteristics that distinguish them from utilitarian products. The way in which users express their identity on SNS is through the sharing of cultural interests and tastes. This makes cultural good consumption vulnerable to the exchange of content and ideas that occurs across an expansive network of connections within these social systems. This study proposes the lens of affordances to theorise the use of social network sites for the consumption of cultural goods. Qualitative case study research using two phases of data collection is proposed in the application of affordances to the research topic. The interaction between task, technology, and user characteristics is investigated by examining each characteristic in detail, before investigating the actual interaction between the user and the artifact for a particular purpose. The study contributes to knowledge by (i) improving our understanding of the affordances of social network sites for the consumption of cultural goods, (ii) demonstrating the role of task, technology and user characteristics in mediating user behaviour for user-artifact interactions, (iii) explaining the technical features and user activities important to the process of consuming cultural goods using social network sites, and (iv) theorising the consumption of cultural goods using SNS by presenting a theoretical research model which identifies empirical indicators of model constructs and maps out affordance dependencies and hierarchies. The study also provides a systematic research process for applying the concept of affordances to the study of system use.