1000 resultados para NANOPARTICLES
Resumo:
Water solubility and surface functionalization of magnetic nanoparticles are crucial for bioapplication.[1]In this study,we presented a facile coprecipitation approach to synthesize lysine stabilized Fe3O4 nanoparticles.Lysine functionalized magnetite nanoparticles show an excellent colloidal stability of >20h.The as-synthesized magnetite nanoparticles have abundant amine groups on their surface which provide convenient sites for covalent linking of biological macromolecules.We believe that these amine-functionalized magnetic nanoparticles can be potentially used in fields such as magnetic bio-separation,immunoassay,MRI,and targeted drug delivery.
Resumo:
SiO2-CaO-P2O5 gel bioglass (BG) nanoparticles with the diameter of 40 nm were synthesized by sol-gel approach. The surface of BG nanoparticles was grafted through the ring-open polymerization of the L-lactide to yield poly (L-lactide) (PLLA) grafted gel particle (PLLA-g-BG). The PLLA-g-BG was further blended with poly(lactide-co-glycolide) (PLGA) to prepare the nanocomposites of PLLA-g-BG/PLGA with the various blend ratios of two phases. PLLA-g-BG accounted 10%, 20% and 40% in the composite, respectively. TGA, ESEM and EDX were used to analyze the graft ratio of PLLA-g-BG, the dispersion of nano-particles and the surface elements of the composites respectively. The rabbit osteoblasts were seeded and cultured on the thin films of composites in vitro. The cell adhesion, spreading and growth of osteoblasts were analyzed with FITC staining, NIH Image J software and MTT assay. The change of cell cycle was monitored by flow cytometry (FCM). The results demonstrated that the Surface modification of BG with PLLA could significantly improve the dispersing of the particles in the matrix of PLGA. The nanocomposite with 20% PLLA-g-BG exhibited superior surface properties, including roughness and plenty of silicon, calcium and phosper, to enhance the adhesion, spreading and proliferation of osteoblasts.
Resumo:
Bioactive SiO2-CaO-P2O5 gel (BAG) nanoparticles with 40 nm in diameter were synthesized by the sol-gel route and further modified via the ring-opening polymerization of lactide on the surface of particles. Surface modified BAG (mBAG) was introduced in poly(L-lactide) (PLLA) matrix as bioactive filler. The dispersibility of mBAG in PLLA matrix was much higher than that of rough BAG particles. Tensile strength of the mBAG/PLLA composite could be increased to 61.2 MPa at 2 wt% filler content from 53.4 MPa for pure PLLA. The variation of moduli of the BAG/PLLA and mBAG/PLLA composites always showed an enhancement tendency with the increasing content of filler loading. The SEM photographs of the fracture surfaces showed that mBAG could be homogeneously dispersed in the PLLA matrix, and the corrugated deformation could absorb the rupture energy effectively during the breaking of materials. In vitro bioactivity tests showed that both BAG and mBAG particles could endow the composites with ability of the calcium sediment in SBF, but the surface modification of BAG particles could weaken this capability to some extent. Biocompatibility tests showed that both BAG and mBAG particles could facilitate the attachment and proliferation of the marrow cells on the surface of the composite.
Resumo:
In this work, glycyrrhetinic acid-modified chitosan (mGA-suc-CTS) used as liver targeted carrier for drug delivery, was prepared via hemisuccinate as a bridged group. The structure of the product was confirmed by IR and NMR methods and the degree of substitution (DS) of glycyrrhetinic acid groups was estimated via elemental analysis. Nanoparticles were formed by ionic gelation methold. The drug-loading and release behavior of the nanoparticles were investigated using BSA as the model drug. The results indicated that the carrier with a highest DS of 5.19% could be got and the DS was controlled by changing reaction temperature or feed ratio. BSA could be entrapped into the nanoparticles with the drug-loading ratio of 26.3% and the encapsulation efficiency of 81.5%. A sustained release over an 11-day period was observed in pH 7.4 in vitro.
Resumo:
We reported a simple method to synthesize gold nanoparticles (NPs) by photoreducing HAuCl4 in acetic acid solution in the presence of type I collagen. It was found that the collagen takes an important role in the formation of gold NPs. The introduction of collagen made the shape of the synthesized gold nanocrystals change from triangular and hexangular gold nanoplates to size-uniform NPs. On the other hand, thanks to the special characters of collagen molecules, such as its linear nanostructure, are positively charged when the pH < 7, and the excellent self-assembly ability, photoreduced gold NPs were assembled onto the collagen chains and formed gold NPs films and networks. A typical probe molecule, 4-aminothiophenol, was used to test the surface-enhanced Raman scattering activity of these gold NPs films and networks and the results indicated good Raman activity on these substrates.
Resumo:
Dissolvable, size- and shape-controlled ruthenium dioxide nanoparticles are successfully achieved through a two-phase route. The influence of reaction time, temperature, and monomer concentration and the nature of capping agents on the morphologies of nanoparticles are studied through transmission electron microscopy (TEM). A possible mechanism for the formation and growth of nanoparticles is also involved. X-ray powder diffraction (XRD) confirms the amorphous structure for as-prepared ruthenium dioxide nanoparticles. Samples are immobilized by simple dip-coating on a current collector, and the cyclic voltammetry measurement is utilized to investigate their electrochemical properties. The specific capacitance of one sample can teach as high as 840 F g(-1), which reveals the promising application potential to electrochemical capacitors.
Resumo:
The effect of template phase on the structures of as-synthesized silica nanoparticles with fragile DDAB vesicles as templates is reported. It is found that the template phase plays a critical role in the growth process of silica: the unstable DDAB vesicles in liquid-crystalline phase often lead to the formation of mesostructured solid spheres, and the rather stable DDAB vesicles in gel phase lead to the formation of hollow spheres with less mesostructures.
Resumo:
In this communication, biosynthesis of gold nanoparticles assisted by Escherichia coli DH5 alpha and its application on direct electrochemistry of hemoglobin are reported. The gold nanoparticles formed on the bacteria surface are mostly spherical. The direct electrochemistry of hemoglobin can be achieved by incorporated into the bio-nanocomposite films on a glassy carbon electrode.
Resumo:
One-step synthesis of Ru (bpy)(3) Cl-2-immobilized (bpy = 2,2'-bipyridine) silica nanoparticles (Ru-silica nanoparticles) for use in electrogenerated-chemiluminescence (ECL) detection is reported. Ru-silica nanoparticles are prepared by using the Stober method. Compared with free Ru(bpy)(3)Cl-2, Ru-silica nanoparticles are seen to exhibit a red-shift of the UV-vis absorbance peak and a longer fluorescence lifetime, which are attributed to the electrostatic interaction of Ru(bpy)(3)(2+) and silica. Because silica nanoparticles are used as immobilization matrices, the surfaces of Ru-silica nanoparticles are easily modified or functionalized via the assembly of other nanoparticles, such as Au. For ECL detection, Au-colloid-modified Ru-silica nanoparticles are immobilized on a 3-mercaptopropyl-trimethoxysilane-modified indium tin oxide electrode surface by Au-S interaction; the surface concentration of electroactive Ru(bpy)(3)Cl-2 is obviously higher than that in silica films.
Resumo:
We describe herein the preparation of silver nanoparticles (AgNPs) using nucleobase adenine as protecting agent through the in situ chemical reduction of AgNO3 with NaBH4 in an aqueous medium at room temperature. As-prepared AgNPs were characterized by UV-visible spectra, transmission electron microscopy and x-ray photoelectron spectroscopy. All these data confirmed the formation of AgNPs. On the basis of electrostatic interactions between as-prepared AgNPs and anionic polyelectrolyte poly(sodium 4-styrenesulfonate) (PSS), we successfully fabricated (PSS/AgNP)n (n = 0-9) multilayers on a 3-mercaptopropyltrimethoxysilane/AgNP functionalized indium tin oxide (ITO) substrate via the layer-by-layer self-assembly technique and characterized as-formed multilayers with UV-visible spectra. Furthermore, these ITO substrates coated with multilayers of different thickness were investigated as surface-enhanced Raman scattering (SERS)-active substrates using p-aminothiophenol as a probe molecule, implying that these multilayers substrates may be promising for a new type of SERS-active substrate.
Resumo:
This review covers recent advances in synthesis and electrochemical applications of gold nanoparticles (AuNPs). Described approaches include the synthesis of AuNPs via designing and choosing new protecting ligands; and applications in electrochemistry of AuNPs including AuNPs-based bioelectrochemical sensors, such as direct electrochemistry of redox-proteins, genosensors and immunosensors, and AuNPs as enhancing platform for electrocatalysis and electrochemical sensors.
Resumo:
CeF3: Tb3+ nanoparticles (short pillar-like morphology with an average length and width of 11 and 5 nm, respectively) were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. After being functionalized with a SiO2-NH2 layer, these CeF3: Tb3+ nanoparticles can be conjugated with biotin molecules (activated by thionyl chloride) and further with avidin. The as-formed CeF3: Tb3+ nanoparticles, CeF3: Tb3+ nanoparticles functionalized with amino groups, biotin conjugated amino-functionalized CeF3: Tb3+ nanoparticles and biotinylated CeF3: Tb3+ nanoparticles bonded with avidin were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), UV/vis absorption spectra and luminescence spectra, respectively. The biofunctionalization of the CeF3: Tb3+ nanoparticles has less effect on their luminescence properties, i.e. they still show strong green emission (from Tb3+, with D-5(4) - F-7(5) at 543 nm as the most prominent group), indicative of the great potential for these CeF3: Tb3+ nanoparticles to be used as biological fluorescence probes.