917 resultados para N-Acetyl cysteine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pKa values of ionizable groups in proteins report the free energy of site-specific proton binding and provide a direct means of studying pH-dependent stability. We measured histidine pKa values (H3, H22, and H105) in the unfolded (U), intermediate (I), and sulfate-bound folded (F) states of RNase P protein, using an efficient and accurate nuclear magnetic resonance-monitored titration approach that utilizes internal reference compounds and a parametric fitting method. The three histidines in the sulfate-bound folded protein have pKa values depressed by 0.21 ± 0.01, 0.49 ± 0.01, and 1.00 ± 0.01 units, respectively, relative to that of the model compound N-acetyl-l-histidine methylamide. In the unliganded and unfolded protein, the pKa values are depressed relative to that of the model compound by 0.73 ± 0.02, 0.45 ± 0.02, and 0.68 ± 0.02 units, respectively. Above pH 5.5, H22 displays a separate resonance, which we have assigned to I, whose apparent pKa value is depressed by 1.03 ± 0.25 units, which is ∼0.5 units more than in either U or F. The depressed pKa values we observe are consistent with repulsive interactions between protonated histidine side chains and the net positive charge of the protein. However, the pKa differences between F and U are small for all three histidines, and they have little ionic strength dependence in F. Taken together, these observations suggest that unfavorable electrostatics alone do not account for the fact that RNase P protein is intrinsically unfolded in the absence of ligand. Multiple factors encoded in the P protein sequence account for its IUP property, which may play an important role in its function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Outer membrane vesicles (OMVs) are ubiquitously secreted from the outer membrane (OM) of Gram-negative bacteria. These heterogeneous structures are composed of OM filled with periplasmic content from the site of budding. By analyzing mutants that have vesicle production phenotypes, we can gain insight into the mechanism of OMV budding in wild-type cells, which has thus far remained elusive. In this study, we present data demonstrating that the hypervesiculation phenotype of the nlpI deletion mutant of Escherichia coli correlates with changes in peptidoglycan (PG) dynamics. Our data indicate that in stationary phase cultures the nlpI mutant exhibits increased PG synthesis that is dependent on spr, consistent with a model in which NlpI controls the activity of the PG endopeptidase Spr. In log phase, the nlpI mutation was suppressed by a dacB mutation, suggesting that NlpI regulates penicillin-binding protein 4 (PBP4) during exponential growth. The data support a model in which NlpI negatively regulates PBP4 activity during log phase, and Spr activity during stationary phase, and that in the absence of NlpI, the cell survives by increasing PG synthesis. Further, the nlpI mutant exhibited a significant decrease in covalent outer membrane (OM-PG) envelope stabilizing cross-links, consistent with its high level of OMV production. Based on these results, we propose that one mechanism wild-type Gram-negative bacteria can use to modulate vesiculation is by altering PG-OM cross-linking via localized modulation of PG degradation and synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human alpha-lactalbumin (alpha-LA), a 123-residue calcium-binding protein, has been studied using (15)N NMR relaxation methods in order to characterize backbone dynamics of the native state at the level of individual residues. Relaxation data were collected at three magnetic field strengths and analyzed using the model-free formalism of Lipari and Szabo. The order parameters derived from this analysis are generally high, indicating a rigid backbone. A total of 46 residues required an exchange contribution to T(2); 43 of these residues are located in the alpha-domain of the protein. The largest exchange contributions are observed in the A-, B-, D-, and C-terminal 3(10)-helices of the alpha-domain; these residues have been shown previously to form a highly stable core in the alpha-LA molten globule. The observed exchange broadening, along with previous hydrogen/deuterium amide exchange data, suggests that this part of the alpha-domain may undergo a local structural transition between the well-ordered native structure and a less-ordered molten-globule-like structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Linear poly(amidoamine)s (PAAs) have been designed to exhibit minimal non-specific toxicity, display pH-dependent membrane lysis and deliver genes and toxins in vitro. The aim of this study was to measure PAA cellular uptake using ISA1-OG (and as a reference ISA23-OG) in B16F10 cells in vitro and, by subcellular fractionation, quantitate intracellular trafficking of (125)I-labelled ISA1-tyr in liver cells after intravenous (i.v.) administration to rats. The effect of time after administration (0.5-3h) and ISA1 dose (0.04-100mg/kg) on trafficking, and vesicle permeabilisation (N-acetyl-b-D-glucosaminidase (NAG) release from an isolated vesicular fraction) were also studied. ISA1-OG displayed approximately 60-fold greater B16F10 cell uptake than ISA23-OG. Passage of ISA1 along the liver cell endocytic pathway caused a transient decrease in vesicle buoyant density (also visible by TEM). Increasing ISA1 dose from 10mg/kg to 100mg/kg increased both radioactivity and NAG levels in the cytosolic fraction (5-10 fold) at 1h. Moreover, internalised ISA1 provoked NAG release from an isolated vesicular fraction in a dose-dependent manner. These results provide direct evidence, for the first time, of PAA permeabilisation of endocytic vesicular membranes in vivo, and they have important implications for potential efficacy/toxicity of such polymeric vectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytochemical observations and measurements on cell-free suspensions of lysosomes from the digestive gland of Mytilus edulis showed a reduced latency of the lysosomal enzyme beta -N-acetyl-hexosaminidase 12h after mussels were transferred from 21 to 35%o salinity, but showed no change up to 6 h after transfer. There was a transient alteration in the form of the latency curve after 6 h at high salinity, signifying a gradual change in membrane integrity. Free hexosaminidase activity increased, 12 h after the salinity rise. The lysosomes were permeable to amino acids when ATP was present; permeability increased following the rise in salinity. The concentration of ninhydrin-positive substances in the lysosomes increased 6 h after transfer and then, between 6 and 12 h, the concentration declined. The results are consistent with the hypothesis that lysosomal hydrolysis is a source of free amino acids during the adaptation of mussels to increased salinity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quantitative effects of Cu8+, Cd2+ and Hg2+ on the cytochemical staining reaction for lysosomal N-acetyl-/?-D-glucosaminidase have been determined and related to the inhibitory effects of the metals on colonial growth rate in the experimentally cultured hydroid Campanularia flexuosa. Cytochemical threshold concentrations are comparable to known environmental levels and are about one order of magnitude lower than those obtained by measuring colony growth rates. Pretreatment of colonies with Cuz+ gave no indication of tolerance adaptation, although there is evidence of the cumulative toxicity of Cu2+ and the possible sequestration of this metal in endodermal cell lysosomes. There is also an indication that the Cu2+ may exert its toxic effect by decreasing the stability of the lysosomal membranes, thus increasing the level of free glucosaminidase activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early local invasion by astrocytoma. cells results in tumor recurrence even after apparent total surgical resection, leading to the poor prognosis associated with malignant astrocytomas. Proteolytic enzymes have been implicated in facilitating tumor cell invasion and the current study was designed to characterize the expression of the cysteine proteinase cathepsin S (CatS) in astrocytomas and examine its potential role in invasion. Immunohistochemical analysis of biopsies demonstrated that CatS was expressed in astrocytoma cells but absent from normal astrocytes, oligodendrocytes, neurones and endothelial cells. Microglial cells and macrophages were also positive. Assays of specific activity in 59 astrocytoma biopsies confirmed CatS expression and in addition demonstrated that the highest levels of activity were expressed in grade IV tumors. CatS activity was also present in astrocytoma cells in vitro and the extracellular levels of activity were highest in cultures derived from grade IV tumors. In vitro invasion assays were carried out using the U251MG cell line and the invasion rate was reduced by up to 61% in the presence of the selective CatS inhibitor 4-Morpholineurea-LeuHomoPhe-vinylsulphone. We conclude that CatS expression is up-regulated in astrocytoma. cells and provide evidence for a potential role for CatS in invasion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using patch-clamp and calcium imaging techniques, we characterized the effects of ATP and histamine on human keratinocytes. In the HaCaT cell line, both receptor agonists induced a transient elevation of [Ca2+]i in a Ca2+-free medium followed by a secondary [Ca2+]i rise upon Ca2+ readmission due to store-operated calcium entry (SOCE). In voltage-clamped cells, agonists activated two kinetically distinct currents, which showed differing voltage dependences and were identified as Ca2+-activated (ICl(Ca)) and volume-regulated (ICl, swell) chloride currents. NPPB and DIDS more efficiently inhibited ICl(Ca) and ICl, swell, respectively. Cell swelling caused by hypotonic solution invariably activated ICl, swell while regulatory volume decrease occurred in intact cells, as was found in flow cytometry experiments. The PLC inhibitor U-73122 blocked both agonist- and cell swelling–induced ICl, swell, while its inactive analogue U-73343 had no effect. ICl(Ca) could be activated by cytoplasmic calcium increase due to thapsigargin (TG)-induced SOCE as well as by buffering [Ca2+]i in the pipette solution at 500 nM. In contrast, ICl, swell could be directly activated by 1-oleoyl-2-acetyl-sn-glycerol (OAG), a cell-permeable DAG analogue, but neither by InsP3 infusion nor by the cytoplasmic calcium increase. PKC also had no role in its regulation. Agonists, OAG, and cell swelling induced ICl, swell in a nonadditive manner, suggesting their convergence on a common pathway. ICl, swell and ICl(Ca) showed only a limited overlap (i.e., simultaneous activation), although various maneuvers were able to induce these currents sequentially in the same cell. TG-induced SOCE strongly potentiated ICl(Ca), but abolished ICl, swell, thereby providing a clue for this paradox. Thus, we have established for the first time using a keratinocyte model that ICl, swell can be physiologically activated under isotonic conditions by receptors coupled to the phosphoinositide pathway. These results also suggest a novel function for SOCE, which can operate as a "selection" switch between closely localized channels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucagon-like peptide-1(7-36)amide (GLP-1) possesses several unique and beneficial effects for the potential treatment of type 2 diabetes. However, the rapid in-activation of GLP-1 by dipeptidyl peptidase IV (DPP IV) results in a short half-life in vivo (less than 2 min) hindering therapeutic development. In the present study, a novel His(7)-modified analogue of GLP-1, N-pyroglutamyl-GLP-1, as well as N-acetyl-GLP-1 were synthesised and tested for DPP IV stability and biological activity. Incubation of GLP-1 with either DPP IV or human plasma resulted in rapid degradation of native GLP-1 to GLP-1 (9-36),amide, while N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 were completely resistant to degradation. N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 bound to the GLP-1 receptor but had reduced affinities (IC50 values 32(.)9 and 6(.)7 nM, respectively) compared with native GLP-1 (IC50 0(.)37 nM). Similarly, both analogues stimulated cAMP production with EC50 values of 16(.)3 and 27 nM respectively compared with GLP-1 (EC50 4(.)7 nM). However, N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 exhibited potent insulinotropic activity in vitro at 5(.)6 mM glucose (P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyperglycaemia-induced oxidative stress may play a key role in the pathogenesis of diabetic vascular disease. The purpose of the present study was to determine the effects of glucose on levels of glutathione (a major intracellular antioxidant), the expression of gamma-glutamylcysteine synthetase (the rate-limiting enzyme in glutathione de novo synthesis) and DNA damage in human vascular smooth muscle cells in vitro. High glucose conditions and buthionine sulphoximine, an inhibitor of gamma-glutamylcysteine synthetase, reduced intracellular glutathione levels in vascular smooth muscle cells. This reduction was accompanied by a decrease in the mRNA expression of both subunits of gamma-glutamylcysteine synthetase as well as an increase in DNA damage. In high glucose conditions incubation of the vascular smooth muscle cells with alpha-lipoic acid and L-cystine restored glutathione levels. We suggest that the decrease in GSH levels seen in high glucose conditions is mediated by the availability of cysteine (rate-limiting substrate in de novo glutathione synthesis) and the gene expression of the gamma- glutamylcysteine synthetase enzyme. Glutathione depletion is associated with an increase in DNA damage, which can be reduced when glutathione levels are restored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

E2A is a transcription factor that plays a particularly critical role in lymphopoiesis. The chromosomal translocation 1;19, disrupts the E2A gene and results in the expression of the fusion oncoprotein E2A-PBX1, which is implicated in acute lymphoblastic leukemia. Both E2A and E2A-PBX1 contain two activation domains, AD1 and AD2, which comprise conserved ΦxxΦΦ motifs where Φ denotes a hydrophobic amino acid. These domains function to recruit transcriptional co-activators and repressors, including the histone acetyl transferase CREB binding protein (CBP) and its paralog p300. The PCET motif within E2A AD1 interacts with the KIX domain of CBP/p300, the disruption of which abrogates the transcriptional activation by E2A and the transformative properties of E2A-PBX1. The generation of a peptide-based inhibitor targeting the PCET:KIX interaction would serve useful in further assessing the role of E2A and E2A-PBX1 in lymphopoiesis and leukemogenesis. An interaction between E2A AD2 and the KIX domain has also been recently identified, and the TAZ domains of CBP/p300 have been shown to interact with several transcription factors that contain ΦxxΦΦ motifs. Thus the design of an inhibitor of the E2A:CBP/p300 interaction requires the full complement of interactions between E2A and the various domains of CBP/p300 to be elucidated. Here, we have used nuclear magnetic resonance (NMR) spectroscopy to determine that AD2 interacts with KIX at the same site as PCET, which indicates that the E2A:KIX interaction can be disrupted by targeting a single binding site. Using an iterative synthetic peptide microarray approach, a peptide with the sequence DKELQDLLDFSLQY was derived from PCET to interact with KIX with higher affinity than the wild type sequence. This peptide now serves as a lead molecule for further development as an inhibitor of the E2A:CBP/p300 interaction. Fluorescence anisotropy, peptide microarray technology, and isothermal titration calorimetry were employed to characterize interactions between both TAZ domains of CBP/p300 and the PCET motif and AD2 of E2A. Alanine substitution of residues within PCET demonstrated that the ΦxxΦΦ motif is a key mediator of these interactions, analogous to the PCET:KIX interaction. These findings now inform future work to establish possible physiological roles for the E2A:TAZ1 and E2A:TAZ2 interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cysteine proteinases have been implicated in astrocytoma invasion. We recently demonstrated that cathepsin S (CatS) expression is up-regulated in astrocytomas and provided evidence for a potential role in astrocytoma invasion (Flannery et al., Am J Path 2003;163(1):175–82). We aimed to evaluate the significance of CatS in human astrocytoma progression and as a prognostic marker. Frozen tissue homogenates from 71 patients with astrocytomas and 3 normal brain specimens were subjected to ELISA analyses. Immunohistochemical analysis of CatS expression was performed on 126 paraffin-embedded tumour samples. Fifty-one astrocytoma cases were suitable for both frozen tissue and paraffin tissue analysis. ELISA revealed minimal expression of CatS in normal brain homogenates. CatS expression was increased in grade IV tumours whereas astrocytoma grades I–III exhibited lower values. Immunohistochemical analysis revealed a similar pattern of expression. Moreover, high-CatS immunohistochemical scores in glioblastomas were associated with significantly shorter survival (10 vs. 5 months, p = 0.014). With forced inclusion of patient age, radiation dose and Karnofsky score in the Cox multivariate model, CatS score was found to be an independent predictor of survival. CatS expression in astrocytomas is associated with tumour progression and poor outcome in glioblastomas. CatS may serve as a useful prognostic indicator and potential target for anti-invasive therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Severity of left ventricular hypertrophy (LVH) correlates with elevated plasma levels of neuropeptide Y (NPY) in hypertension. NPY elicits positive and negative contractile effects in cardiomyocytes through Y(1) and Y(2) receptors, respectively. This study tested the hypothesis that NPY receptor-mediated contraction is altered during progression of LVH. Ventricular cardiomyocytes were isolated from spontaneously hypertensive rats (SHRs) pre-LVH (12 weeks), during development (16 weeks), and at established LVH (20 weeks) and age-matched normotensive Wistar Kyoto (WKY) rats. Electrically stimulated (60 V, 0.5 Hz) cell shortening was measured using edge detection and receptor expression determined at mRNA and protein level. The NPY and Y(1) receptor-selective agonist, Leu(31)Pro(34)NPY, stimulated increases in contractile amplitude, which were abolished by the Y(1) receptor-selective antagonist, BIBP3226 [R-N(2)-(diphenyl-acetyl)-N-(4-hydroxyphenyl)methyl-argininamide)], confirming Y(1) receptor involvement. Potencies of both agonists were enhanced in SHR cardiomyocytes at 20 weeks (2300- and 380-fold versus controls). Maximal responses were not attenuated. BIBP3226 unmasked a negative contraction effect of NPY, elicited over the concentration range (10(-12) to 3 x 10(-9) M) in which NPY and PYY(3-36) attenuated the positive contraction effects of isoproterenol, the potencies of which were increased in cardiomyocytes from SHRs at 20 weeks (175- and 145-fold versus controls); maximal responses were not altered. Expression of NPY-Y(1) and NPY-Y(2) receptor mRNAs was decreased (55 and 69%) in left ventricular cardiomyocytes from 20-week-old SHRs versus age-matched WKY rats; parallel decreases (32 and 80%) were observed at protein level. Enhancement of NPY potency, producing (opposing) contractile effects on cardiomyocytes together with unchanged maximal response despite reduced receptor number, enables NPY to contribute to regulating cardiac performance during compensatory LVH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose. The purpose of this study is to demonstrate the rational design and behaviour of the first dual mode optical and chemical prodrug, exemplified by an acetyl salicylic acid-based system. Methods. A cyclic 1,4-benzodioxinone prodrug was synthesised by reaction of 3,5-dimethoxybenzoin and acetyl salicoyl chloride with pyridine. After purification by column chromatography and recrystallization, characterization was achieved using infrared and NMR spectroscopies, mass spectrometry, elemental analysis and single crystal X-ray diffraction. Light-triggered drug liberation was characterised via UV-visible spectroscopy following low-power 365 nm irradiation for controlled times. Chemical drug liberation was characterised via UV-visible spectroscopy in pH 5.5 solution. Results. The synthetic method yielded pure prodrug, with full supporting characterisation. Light-triggered drug liberation proceeded at a rate of 8.30 10j2 sj1, while chemical, hydrolytic liberation proceeded independently at 1.89 10j3 sj1. The photochemical and hydrolytic reactions were both quantitative. Conclusions. This study demonstrates the first rational dual-mode optical and chemical prodrug, using acetyl salicylic acid as a model, acting as a paradigm for future dual-mode systems. Photochemical drug liberation proceeds 44 times faster than chemical liberation, suggesting potential use in drug-eluting medical devices where an additional burst of drug is required at the onset of infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fluoropyrimidine 5-Fluorouracil (5-FU) is widely used in the treatment of cancer. To identify novel downstream mediators of tumor cell response to 5-FU, we used DNA microarray technology to identify genes that are transcriptionally activated by 5-FU treatment in the MCF-7 breast cancer cell line. Of 2400 genes analyzed, 619 were up-regulated by >3-fold. Highly up-regulated genes (>6-fold) with signal intensities of >3000 were analyzed by Northern blot. Genes that were consistently found to be up-regulated were spermine/spermidine acetyl transferase (SSAT), annexin II, thymosin-beta-10, chaperonin-10, and MAT-8. Treatment of MCF-7 cells with the antifolate tomudex and DNA-damaging agent oxaliplatin also resulted in up-regulation of each of these targets. The 5-FU-induced activation of MAT-8, thymosin-beta-10, and chaperonin-10 was abrogated by inactivation of p53 in MCF-7 cells, whereas induction of SSAT and annexin II was significantly reduced in the absence of p53. Moreover, each of these genes contained more than one potential p53-binding site, suggesting that p53 may play an important regulatory role in 5-FU-induced expression of these genes. In addition, we found that basal expression levels of SSAT, annexin II, thymosin beta-10, and chaperonin-10 were increased (by approximately 2-3-fold), and MAT-8 expression dramatically increased (by approximately 10-fold) in a 5-FU-resistant colorectal cancer cell line (H630-R10) compared with the parental H630 cell line, suggesting these genes may be useful biomarkers of resistance. These results demonstrate the potential of DNA microarrays to identify novel genes involved in mediating the response of tumor cells to chemotherapy.