744 resultados para Music, Computation, Interactive, Visual Art
Resumo:
Computational formalisms have been pushing the boundaries of the field of computing for the last 80 years and much debate has surrounded what computing entails; what it is, and what it is not. This paper seeks to explore the boundaries of the ideas of computation and provide a framework for enabling a constructive discussion of computational ideas. First, a review of computing is given, ranging from Turing Machines to interactive computing. Then, a variety of natural physical systems are considered for their computational qualities. From this exploration, a framework is presented under which all dynamical systems can be considered as instances of the class of abstract computational platforms. An abstract computational platform is defined by both its intrinsic dynamics and how it allows computation that is meaningful to an external agent through the configuration of constraints upon those dynamics. It is asserted that a platform’s computational expressiveness is directly related to the freedom with which constraints can be placed. Finally, the requirements for a formal constraint description language are considered and it is proposed that Abstract State Machines may provide a reasonable basis for such a language.
Resumo:
The feedback mechanism used in a brain-computer interface (BCI) forms an integral part of the closed-loop learning process required for successful operation of a BCI. However, ultimate success of the BCI may be dependent upon the modality of the feedback used. This study explores the use of music tempo as a feedback mechanism in BCI and compares it to the more commonly used visual feedback mechanism. Three different feedback modalities are compared for a kinaesthetic motor imagery BCI: visual, auditory via music tempo, and a combined visual and auditory feedback modality. Visual feedback is provided via the position, on the y-axis, of a moving ball. In the music feedback condition, the tempo of a piece of continuously generated music is dynamically adjusted via a novel music-generation method. All the feedback mechanisms allowed users to learn to control the BCI. However, users were not able to maintain as stable control with the music tempo feedback condition as they could in the visual feedback and combined conditions. Additionally, the combined condition exhibited significantly less inter-user variability, suggesting that multi-modal feedback may lead to more robust results. Finally, common spatial patterns are used to identify participant-specific spatial filters for each of the feedback modalities. The mean optimal spatial filter obtained for the music feedback condition is observed to be more diffuse and weaker than the mean spatial filters obtained for the visual and combined feedback conditions.
Resumo:
Virgil's poetry has frequently appeared in illustrated editions, and has regularly provided subjects for other works of art, including some of the most celebrated masterpieces of the western tradition. In view of its constant appropriation in literary contexts over the course of the centuries, we might expect the famous fourth Eclogue (the so-called ‘messianic’ eclogue) to have exerted more of an impact on visual culture than it appears to have done. This paper considers some of the possible reasons for the apparent scarcity of engagement with Virgil's poem beyond the literary sphere, and examines the uses to which the poet's text is put when it does make an appearance in visual media — perhaps more often than has sometimes been supposed.
Resumo:
This project engages people with learning disabilities to participate as co-researchers and explore museum interpretation through multisensory workshops using microcontrollers and sensors to enable alternative interactive visitor experiences in museums and heritage sites. This article describes how the project brings together artists, engineers, and experts in multimedia advocacy, as well as people with learning disabilities in the co-design of interactive multisensory objects that replicate or respond to objects of cultural significance in our national collections. Through a series of staged multi-sensory art and electronics workshops, people with learning disabilities explore how the different senses could be utilised to augment existing artefacts or create entirely new ones. The co-researchers employ multimedia advocacy tools to reflect on and to communicate their experiences and findings.
Resumo:
This project engages people with learning disabilities to participate as co-researchers and explore museum interpretation through multisensory workshops using microcontrollers and sensors to enable alternative interactive visitor experiences in museums and heritage sites. This article describes how the project brings together artists, engineers, and experts in multimedia advocacy, as well as people with learning disabilities in the co-design of interactive multisensory objects that replicate or respond to objects of cultural significance in our national collections. Through a series of staged multi-sensory art and electronics workshops, people with learning disabilities explore how the different senses could be utilised to augment existing artefacts or create entirely new ones. The co-researchers employ multimedia advocacy tools to reflect on and to communicate their experiences and findings.
Resumo:
Multidimensional Visualization techniques are invaluable tools for analysis of structured and unstructured data with variable dimensionality. This paper introduces PEx-Image-Projection Explorer for Images-a tool aimed at supporting analysis of image collections. The tool supports a methodology that employs interactive visualizations to aid user-driven feature detection and classification tasks, thus offering improved analysis and exploration capabilities. The visual mappings employ similarity-based multidimensional projections and point placement to layout the data on a plane for visual exploration. In addition to its application to image databases, we also illustrate how the proposed approach can be successfully employed in simultaneous analysis of different data types, such as text and images, offering a common visual representation for data expressed in different modalities.
Resumo:
Traditional content-based image retrieval (CBIR) systems use low-level features such as colors, shapes, and textures of images. Although, users make queries based on semantics, which are not easily related to such low-level characteristics. Recent works on CBIR confirm that researchers have been trying to map visual low-level characteristics and high-level semantics. The relation between low-level characteristics and image textual information has motivated this article which proposes a model for automatic classification and categorization of words associated to images. This proposal considers a self-organizing neural network architecture, which classifies textual information without previous learning. Experimental results compare the performance results of the text-based approach to an image retrieval system based on low-level features. (c) 2008 Wiley Periodicals, Inc.
Resumo:
We introduce a flexible technique for interactive exploration of vector field data through classification derived from user-specified feature templates. Our method is founded on the observation that, while similar features within the vector field may be spatially disparate, they share similar neighborhood characteristics. Users generate feature-based visualizations by interactively highlighting well-accepted and domain specific representative feature points. Feature exploration begins with the computation of attributes that describe the neighborhood of each sample within the input vector field. Compilation of these attributes forms a representation of the vector field samples in the attribute space. We project the attribute points onto the canonical 2D plane to enable interactive exploration of the vector field using a painting interface. The projection encodes the similarities between vector field points within the distances computed between their associated attribute points. The proposed method is performed at interactive rates for enhanced user experience and is completely flexible as showcased by the simultaneous identification of diverse feature types.
Resumo:
Biological systems have facility to capture salient object(s) in a given scene, but it is still a difficult task to be accomplished by artificial vision systems. In this paper a visual selection mechanism based on the integrate and fire neural network is proposed. The model not only can discriminate objects in a given visual scene, but also can deliver focus of attention to the salient object. Moreover, it processes a combination of relevant features of an input scene, such as intensity, color, orientation, and the contrast of them. In comparison to other visual selection approaches, this model presents several interesting features. It is able to capture attention of objects in complex forms, including those linearly nonseparable. Moreover, computer simulations show that the model produces results similar to those observed in natural vision systems.
Resumo:
Running hydrodynamic models interactively allows both visual exploration and change of model state during simulation. One of the main characteristics of an interactive model is that it should provide immediate feedback to the user, for example respond to changes in model state or view settings. For this reason, such features are usually only available for models with a relatively small number of computational cells, which are used mainly for demonstration and educational purposes. It would be useful if interactive modeling would also work for models typically used in consultancy projects involving large scale simulations. This results in a number of technical challenges related to the combination of the model itself and the visualisation tools (scalability, implementation of an appropriate API for control and access to the internal state). While model parallelisation is increasingly addressed by the environmental modeling community, little effort has been spent on developing a high-performance interactive environment. What can we learn from other high-end visualisation domains such as 3D animation, gaming, virtual globes (Autodesk 3ds Max, Second Life, Google Earth) that also focus on efficient interaction with 3D environments? In these domains high efficiency is usually achieved by the use of computer graphics algorithms such as surface simplification depending on current view, distance to objects, and efficient caching of the aggregated representation of object meshes. We investigate how these algorithms can be re-used in the context of interactive hydrodynamic modeling without significant changes to the model code and allowing model operation on both multi-core CPU personal computers and high-performance computer clusters.
Resumo:
This work presents a methodology to analyze transient stability (first oscillation) of electric energy systems, using a neural network based on ART architecture (adaptive resonance theory), named fuzzy ART-ARTMAP neural network for real time applications. The security margin is used as a stability analysis criterion, considering three-phase short circuit faults with a transmission line outage. The neural network operation consists of two fundamental phases: the training and the analysis. The training phase needs a great quantity of processing for the realization, while the analysis phase is effectuated almost without computation effort. This is, therefore the principal purpose to use neural networks for solving complex problems that need fast solutions, as the applications in real time. The ART neural networks have as primordial characteristics the plasticity and the stability, which are essential qualities to the training execution and to an efficient analysis. The fuzzy ART-ARTMAP neural network is proposed seeking a superior performance, in terms of precision and speed, when compared to conventional ARTMAP, and much more when compared to the neural networks that use the training by backpropagation algorithm, which is a benchmark in neural network area. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A proposta deste estudo é relatar a utilização da arte e seus segmentos, como recurso para inclusão da criança portadora de necessidades especiais ao ambiente odontológico. Foi utilizado como método a aplicação da arte em atividades de socioterapia e oficinas, divididas em módulos: sessão de socialização, oficinas de arte e atividades complementares, visando à elaboração de uma anamnese cultural por meio de questionários e a obtenção das preferências artísticas dos 313 participantes, previamente às suas assistências odontológicas no CAOE (Centro de Assistência Odontológica a Portadores de Necessidades Especiais) FOA/Unesp. de acordo com os questionários respondidos, a música e a pintura, segundo a preferência dos participantes, são os segmentos artísticos que mais auxiliam nas atividades de inclusão e adaptação. Concluímos que a utilização da arte na adaptação e inclusão ambiental do paciente, previamente à assistência odontológica, é favorável e eficaz.
Resumo:
O presente artigo encontra-se inserido dentro de um estudo que busca compreender as principais alternativas para a inclusão de alunos com deficiência visual no contexto do ensino de física. Focalizando aulas de óptica, analisa as viabilidades comunicacionais entre licenciandos e discentes com deficiência visual. Para tal, enfatiza as estruturas empírica e semântico-sensorial das linguagens utilizadas, indicando fatores geradores de acessibilidade às informações veiculadas. Recomenda, ainda, alternativas que visam dar condições à participação efetiva do discente com deficiência visual no processo comunicativo, das quais se destacam: a identificação da estrutura semântico-sensorial dos significados veiculados, o conhecimento da história visual do aluno, a utilização de linguagens de estrutura empírica tátil-auditiva interdependente em contextos interativos, bem como, a exploração das potencialidades comunicacionais das linguagens constituídas de estruturas empíricas fundamental auditiva, e auditiva e visual independentes.
Resumo:
This paper deals with the usage of interactive simulations tools to serve as an oriented design tool for the lectures and laboratory experiments in the power electronics courses. A dynamic and interactive visualization of simulations for idealized converters in steady state are provided by the proposed educational tools, allowing students to acquire qualification in non-isolated DC-DC converters, without previous circuitry knowledge, either without the usage of sophisticated simulation packages. The interaction with proposed simulation tools can be accomplished by student using direct or graphic mode. In direct mode the parameters related with the design of converter can be inserted simply editing default values presented in textboxes, while in the graphic mode students interact indirectly with design information by manipulating visual widgets. In order to corroborate the proposed interactive simulation tools, comparisons of results from buck-boost and boost converters on proposed tools and a well-known simulator package with those on experimental evaluation from laboratory classes were presented. © 2009 IEEE.
Resumo:
Image categorization by means of bag of visual words has received increasing attention by the image processing and vision communities in the last years. In these approaches, each image is represented by invariant points of interest which are mapped to a Hilbert Space representing a visual dictionary which aims at comprising the most discriminative features in a set of images. Notwithstanding, the main problem of such approaches is to find a compact and representative dictionary. Finding such representative dictionary automatically with no user intervention is an even more difficult task. In this paper, we propose a method to automatically find such dictionary by employing a recent developed graph-based clustering algorithm called Optimum-Path Forest, which does not make any assumption about the visual dictionary's size and is more efficient and effective than the state-of-the-art techniques used for dictionary generation. © 2012 IEEE.