966 resultados para Muscle stimulation
Resumo:
INTRODUCTION: Smoothelin is a cytoskeletal protein of differentiated smooth muscle cells with contractile capacity, distinguishing it from other smooth muscle proteins, such as smooth muscle actin (SMA). OBJECTIVE: To evaluate the expression of smoothelin and SMA in the skin in order to establish specific localizations of smoothelin in smooth muscle cells with high contractile capacity and in the epithelial component of cutaneous adnexal structures. Methods: Immunohistochemical analysis (smoothelin and SMA) was performed in 18 patients with normal skin. RESULTS: SMA was expressed by the vascular structures of superficial, deep, intermediate and adventitial plexuses, whereas smoothelin was specifically expressed in the cytoplasm of smooth muscle cells of the deepest vascular plexus and in no other plexus of the dermis. The hair erector muscle showed intense expression of smoothelin and SMA. Cells with nuclear expression of smoothelin and cytoplasmic expression of SMA were observed in the outer root sheath of the inferior portion of the hair follicles and intense cytoplasmic expression in cells of the dermal sheath to SMA. CONCLUSIONS: We report the first study of smoothelin expression in normal skin, which differentiates the superficial vascular plexus from the deep. The deep plexus comprises vessels with high contractile capacity, which is important for understanding dermal hemodynamics in normal skin and pathological processes. We suggest that the function of smoothelin in the outer root sheath may be to enhance the function of SMA, which has been related to mechanical stress. Smoothelin has not been studied in cutaneous pathology; however we believe it may be a marker specific for the diagnosis of leiomyomas and leiomyosarcomas of the skin. Also, smoothelin could differentiate arteriovenous malformations of cavernous hemangioma of the skin
Resumo:
Infection by the protozoan parasite Toxoplasma gondii is widely prevalent in humans and animals. To prevent human infection, all meat should be well cooked before consumption, since the parasite is present in skeletal muscle. In this context, the use of skeletal muscle cells (SkMCs) as a cellular model opens up new approaches to investigate T. gondii-host cell interactions. Immunofluorescent detection of proteins that are stage-specific for bradyzoites indicated that complete cystogenesis of T. gondii in in vitro cultures of SkMCs occurs after 96 h of infection. Ultrastructural analysis showed that, after 48 h of interaction, there were alterations on the parasitophorous vacuole membrane, including greater thickness and increased electron density at the inner face of the membrane. The present study demonstrates the potential use of primary cultures of SkMCs to evaluate different molecular aspects of T. gondii invasion and cystogenesis and presents a promising in vitro model for the screening of drug activities toward tissue cysts and bradyzoites.
Resumo:
Although the predilection for Toxoplasma gondii to form cysts in the nervous system and skeletal and heart muscles has been described for more than fifty years, skeletal muscle cells (SkMCs) have not been explored as a host cell type to study the Toxoplasma-host cell interaction and investigate the intracellular development of the parasite. Morphological aspects of the initial events in the Toxoplasma-SkMC interaction were analysed and suggest that there are different processes of protozoan adhesion and invasion and of the subsequent fate of the parasite inside the parasitophorous vacuole (PV). Using scanning electron microscopy,Toxoplasma tachyzoites from the mouse-virulent RH strain were found to be attached to SkMCs by the anterior or posterior region of the body, with or without expansion of the SkMC membrane. This suggests that different types of parasite internalization occurred. Asynchronous multiplication and differentiation of T. gondii were observed. Importantly, intracellular parasites were seen to display high amounts of amylopectin granules in their cytoplasm, indicating that tachyzoites of the RH strain were able to differentiate spontaneously into bradyzoites in SkMCs. This stage conversion occurred in approximately 3% of the PVs. This is particularly intriguing as tachyzoites of virulent Toxoplasma strains are not thought to be prone to cyst formation. We discuss whether biological differences in host cells are crucial to Toxoplasma stage conversion and suggest that important questions concerning the host cell type and its relevance in Toxoplasma differentiation are still unanswered.
Resumo:
Understanding how nanoparticles may affect immune responses is an essential prerequisite to developing novel clinical applications. To investigate nanoparticle-dependent outcomes on immune responses, dendritic cells (DCs) were treated with model biomedical poly(vinylalcohol)-coated super-paramagnetic iron oxide nanoparticles (PVA-SPIONs). PVA-SPIONs uptake by human monocyte-derived DCs (MDDCs) was analyzed by flow cytometry (FACS) and advanced imaging techniques. Viability, activation, function, and stimulatory capacity of MDDCs were assessed by FACS and an in vitro CD4(+) T cell assay. PVA-SPION uptake was dose-dependent, decreased by lipopolysaccharide (LPS)-induced MDDC maturation at higher particle concentrations, and was inhibited by cytochalasin D pre-treatment. PVA-SPIONs did not alter surface marker expression (CD80, CD83, CD86, myeloid/plasmacytoid DC markers) or antigen-uptake, but decreased the capacity of MDDCs to process antigen, stimulate CD4(+) T cells, and induce cytokines. The decreased antigen processing and CD4(+) T cell stimulation capability of MDDCs following PVA-SPION treatment suggests that MDDCs may revert to a more functionally immature state following particle exposure.
Resumo:
Recent evidence has emerged that peroxisome proliferator-activated receptor alpha (PPARalpha), which is largely involved in lipid metabolism, can play an important role in connecting circadian biology and metabolism. In the present study, we investigated the mechanisms by which PPARalpha influences the pacemakers acting in the central clock located in the suprachiasmatic nucleus and in the peripheral oscillator of the liver. We demonstrate that PPARalpha plays a specific role in the peripheral circadian control because it is required to maintain the circadian rhythm of the master clock gene brain and muscle Arnt-like protein 1 (bmal1) in vivo. This regulation occurs via a direct binding of PPARalpha on a potential PPARalpha response element located in the bmal1 promoter. Reversely, BMAL1 is an upstream regulator of PPARalpha gene expression. We further demonstrate that fenofibrate induces circadian rhythm of clock gene expression in cell culture and up-regulates hepatic bmal1 in vivo. Together, these results provide evidence for an additional regulatory feedback loop involving BMAL1 and PPARalpha in peripheral clocks.
Resumo:
Comment on N Engl J Med. 2010 Jun 3;362(22):2077-91 author reply 988.
Resumo:
Subthalamic nucleus deep brain stimulation (STN-DBS) is a recognized treatment for advanced and severe forms of Parkinson's Disease. The procedure improves motor signs and often allows a reduction of the medication. The impact of the procedure on cognitive and neuropsychiatric signs of the disease is more debated and there is an international consensus for the need of a multidisciplinary evaluation of patients undergoing such programs, including a neuropsychiatric assessment. We present a review of the literature as well as the experience at our centre focused on the short and long term outcome on mood following STN-DBS.
Resumo:
Biologicals have been used for decades in biopharmaceutical topical preparations. Because cellular therapies are rou-tinely used in the clinic they have gained significant attention. Different derivatives are possible from different cell and tissue sources, making the selection of cell types and establishment of consistent cell banks crucial steps in the initial whole-cell bioprocessing. Various cell and tissue types have been used in treatment of skin wounds including autolo-gous and allogenic skin cells, platelets, placenta and amniotic extracts from either human or animal sources. Experience with progenitor cells show that they may provide an interesting cell choice due to facility of out-scaling and known properties for wound healing without scar. Using defined animal cell lines to develop cell-free derivatives may provide initial starting material for pharmaceutical formulations that help in overall stability. Cell lines derived from ovine tis-sue (skin, muscle, connective tissue) can be developed in short periods of time and consistency of these cell lines was monitored by cellular life-span, protein concentrations, stability and activity. Each cell line had long culture periods up to 37 - 41 passages and protein measures for each cell line at passages 2 - 15 had only 1.4-fold maximal difference. Growth stimulation activity towards two target skin cell lines (GM01717 and CRL-1221; 40 year old human males) at concentrations ranging up to 6 μg/ml showed 2-3-fold (single extracts) and 3-7-fold (co-cultured extracts) increase. Proteins from co-culture remained stable up to 1 year in pharmaceutical preparations shown by separation on SDS- PAGE gels. Pharmaceutical cell-free preparations were used for veterinary and human wounds and burns. Cell lines and cell-free extracts can show remarkable consistency and stability for preparation of biopharmaceutical creams, moreover when cells are co-cultured, and have positive effects for tissue repair.
Resumo:
In a prospective nonrandomized study, using each baby as his or her own control, we compared intracranial pressure (anterior fontanel pressure as measured with the Digilab pneumotonometer), cerebral perfusion pressure, BP, heart rate, transcutaneous Po2, and transcutaneous Pco2 before, during, and after endotracheal suctioning, with and without muscle paralysis, in 28 critically ill preterm infants with respiratory distress syndrome. With suctioning, there was a small but significant increase in intracranial pressure in paralyzed patients (from 13.7 [mean] +/- 4.4 mm Hg [SD] to 15.8 +/- 5.2 mm Hg) but a significantly larger (P less than .001) increase when they were not paralyzed (from 12.5 +/- 3.6 to 28.5 +/- 8.3 mm Hg). Suctioning led to a slight increase in BP with (from 45.3 +/- 9.1 to 48.0 +/- 8.7 mm Hg) and without muscle paralysis (from 45.1 +/- 9.4 to 50.0 +/- 11.7 mm Hg); but there was no significant difference between the two groups. The cerebral perfusion pressure in paralyzed infants did not show any significant change before, during, and after suctioning (31.5 +/- 9.1 mm Hg before v 32.0 +/- 8.7 mm Hg during suctioning), but without muscle paralysis cerebral perfusion pressure decreased (P less than .001) from 32.8 +/- 9.7 to 21.3 +/- 13.1 mm Hg. Suctioning induced a slight decrease in mean heart rate and transcutaneous Po2, but pancuronium did not alter these changes. There was no statistical difference in transcutaneous Pco2 before, during, and after suctioning with and without muscle paralysis.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The brain regulates all metabolic processes within the organism, and therefore, its energy supply is preserved even during fasting. However, the underlying mechanism is unknown. Here, it is shown, using (31)P-magnetic resonance spectroscopy that during short periods of hypoglycemia and hyperglycemia, the brain can rapidly increase its high-energy phosphate content, whereas there is no change in skeletal muscle. We investigated the key metabolites of high-energy phosphate metabolism as rapidly available energy stores by (31)P MRS in brain and skeletal muscle of 17 healthy men. Measurements were performed at baseline and during dextrose or insulin-induced hyperglycemia and hypoglycemia. During hyperglycemia, phosphocreatine (PCr) concentrations increased significantly in the brain (P = 0.013), while there was a similar trend in the hypopglycemic condition (P = 0.055). Skeletal muscle content remained constant in both conditions (P > 0.1). ANOVA analyses comparing changes from baseline to the respective glycemic plateau in brain (up to +15%) vs. muscle (up to -4%) revealed clear divergent effects in both conditions (P < 0.05). These effects were reflected by PCr/Pi ratio (P < 0.05). Total ATP concentrations revealed the observed divergency only during hyperglycemia (P = 0.018). These data suggest that the brain, in contrast to peripheral organs, can activate some specific mechanisms to modulate its energy status during variations in glucose supply. A disturbance of these mechanisms may have far-reaching implications for metabolic dysregulation associated with obesity or diabetes mellitus.
Resumo:
Objectif : Etudier les résultats cliniques du traitement de patients atteints pai- une épilepsie mésiale du lobe temporal (MTLE) réfractaire, par stimulation cérébrale profonde (DBS) de l'hippocampe, en fonction de l'emplacement de l'électrode. Méthodes : Huit patients atteints de MTLE implantés dans l'hippocampe et stimulés par DBS à haute fréquence ont été inclus dans cette étude. Cinq ont subi des enregistrements invasifs avec des électrodes profondes dans le but d'estimer la localisation du foyer ictal avant de procéder à une DBS chronique. La position des contacts actifs de l'électrode a été mesurée en utilisant une imagerie post-opératoire. Les distances par rapport au foyer ictal ont été calculées, et les structures hippocampiques influencées par la stimulation ont été identifiées au moyen d'un atlas neuro-anatomique. Ces deux paramètres ont été corrélés avec la réduction de la fréquence d'apparition des crises. Résultats : Les distances entre la localisation estimée des contacts actifs de l'électrode et le foyer ictal étaient respectivement 11.0 +/- 4.3 ou 9.1 +/- 2.3 mm pour les patients présentant une réduction de > 50% ou < 50% de la fréquence des crises. Chez les patients (N = 6) montrant une réduction de > 50% de la fréquence des crises, 100% avaient des contacts actifs situés à < 3 mm du subiculum (p < 0,05). Les 2 patients ne répondant pas au traitement étaient stimulés par des contacts situés à > 3mm du subiculum. Conclusion : La diminution de l'activité épileptogène induite par DBS sur l'hippocampe dans les cas de MTLE réfractaires : 1) ne semble pas directement liée à la proximité des contacts actifs de l'électrode au foyer ictal déterminé par les enregistrements invasifs ; 2) pourrait être obtenue par une neuro-modulation du subiculum.
Resumo:
BACKGROUND: Nineteen patients were evaluated after closure of intrathoracic esophageal leaks by a pediculated muscle flap onlay repair in the presence of mediastinal and systemic sepsis. METHODS: Intrathoracic esophageal leaks with mediastinitis and systemic sepsis occurred after delayed spontaneous perforations (n = 7) or surgical and endoscopic interventions (n = 12). Six patients presented with fulminant anastomotic leaks. Seven patients had previous attempts to close the leak by surgery (n = 4) or stenting (2) or both (n = 1). The debrided defects measured up to 2 x 12 cm or involved three quarters of the anastomotic circumference and were closed either by a full thickness diaphragmatic flap (n = 13) or a pediculated intrathoracically transposed extrathoracic muscle flap (n = 6). All patients had postoperative contrast esophagography between days 7 and 10 and an endoscopic evaluation 4 to 6 months after surgery. RESULTS: There was no 30-day mortality. During follow-up (4 to 42 months), 16 patients (84%) revealed functional and morphological restoration of the esophagointestinal integrity without further interventions. One patient required serial dilatations for a stricture, and 1 underwent temporary stenting for a persistent fistula; both patients had normal control endoscopy during follow-up. A third patient requiring permanent stenting for stenosis died from gastrointestinal bleeding due to stent erosion during follow-up. CONCLUSIONS: Intrathoracic esophageal leaks may be closed efficiently by a muscle flap onlay approach in the presence of mediastinitis and where a primary repair seems risky. The same holds true for fulminant intrathoracic anastomotic leaks after esophagectomy or other surgical interventions at the gastroesophageal junction.
Resumo:
Genetic analysis of fission yeast suggests a role for the spHop2-Mnd1 proteins in the Rad51 and Dmc1-dependent meiotic recombination pathways. In order to gain biochemical insights into this process, we purified Schizosaccharomyces pombe Hop2-Mnd1 to homogeneity. spHop2 and spMnd1 interact by co-immunoprecipitation and two-hybrid analysis. Electron microscopy reveals that S. pombe Hop2-Mnd1 binds single-strand DNA ends of 3'-tailed DNA. Interestingly, spHop2-Mnd1 promotes the renaturation of complementary single-strand DNA and catalyses strand exchange reactions with short oligonucleotides. Importantly, we show that spHop2-Mnd1 stimulates spDmc1-dependent strand exchange and strand invasion. Ca(2+) alleviate the requirement for the order of addition of the proteins on DNA. We also demonstrate that while spHop2-Mnd1 affects spDmc1 specifically, mHop2 or mHop2-Mnd1 stimulates both the hRad51 and hDmc1 recombinases in strand exchange assays. Thus, our results suggest a crucial role for S. pombe and mouse Hop2-Mnd1 in homologous pairing and strand exchange and reveal evolutionary divergence in their specificity for the Dmc1 and Rad51 recombinases.
Resumo:
Introduction: Tissue Renin-Angiotensin System activity is increased in obesity and may contribute to obesity-related hypertension and metabolic abnormalities. This open-label pilot study investigated the local effects of Aliskiren in adipose tissue and skeletal muscle.Methods: After a 1-2 week washout, 10 patients with hypertension and abdominal obesity received placebo for 2 weeks, then Aliskiren 300 mg once daily for 4 weeks, followed by a 4-week washout period and then another 4 weeks treatment period with Amlodipine 5 mg once daily. Drug concentrations and Renin-Angiotensin Systembiomarkers were measured in interstitial fluid employing the microdialysis zero-flow method, and in biopsies from abdominal subcutaneous adipose and skeletal muscle.Results: After 4 weeks treatment, microdialysate concentrations (mean±SD) of Aliskiren were 2.4±2.1 ng/ml in adipose tissue, and 7.1±4.2 ng/ml in skeletal muscle. These concentrations were similar to the mean plasma concentration of 8.4±4.4 ng/ml. Tissue concentrations (ng/g) of Aliskiren were 29.0±16.7 ng/g in adipose tissue, and 107.3±68.6 ng/g in skeletal muscle after 4 weeks treatment. Angiotensin II concentrations in microdialysates were below the lower limit of quantification in most patients, but pooled data from two patients suggested that Angiotensin II was reduced by Aliskiren and unchanged by Amlodipine. Aliskiren 300 mg significantly reduced mean plasma Renin activity by 68% and Angiotensin II by 61% (p<0.05 vs. baseline). Amlodipine 5 mg increased plasma Renin activity by 48% (p<0.05 vs. baseline), and non-significantly increased Angiotensin II by 60%. Both treatments increased plasma Renin concentration.Conclusion: Aliskiren 300 mg once daily penetrates adipose and skeletal muscle tissue at concentrations sufficient to reduce tissue Renin-Angiotensin System activity in obese patients with hypertension.
Resumo:
The Alpine swift (Apus melba) forages on insects caught exclusively on the wing, implying that dependent nestlings face acute food shortage in periods of cold and rainy weather. Therefore, there should be strong selection on nestling swifts to evolve physiological strategies to cope with periods of undernutrition. We have investigated intra-individual changes in nestling pectoral muscle and body temperature in response to a 1-week period of inclement weather. The pectoral muscle is the largest reserves of proteins, and nestlings have to devote a large amount of energy in the maintenance of body temperature. The results show that nestling pectoral muscle size and body temperature were significantly reduced during the episode of inclement weather. Assuming that these physiological changes are adaptive, our study suggests that nestling swifts spare energy by a pronounced reduction (up to 18 degrees C) in body temperature and use proteins from the pectoral muscle as a source of extra energy to survive prolonged periods of fasting.