731 resultados para Multiloop controllers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The behaviour of control functions in safety critical software systems is typically bounded to prevent the occurrence of known system level hazards. These bounds are typically derived through safety analyses and can be implemented through the use of necessary design features. However, the unpredictability of real world problems can result in changes in the operating context that may invalidate the behavioural bounds themselves, for example, unexpected hazardous operating contexts as a result of failures or degradation. For highly complex problems it may be infeasible to determine the precise desired behavioural bounds of a function that addresses or minimises risk for hazardous operation cases prior to deployment. This paper presents an overview of the safety challenges associated with such a problem and how such problems might be addressed. A self-management framework is proposed that performs on-line risk management. The features of the framework are shown in context of employing intelligent adaptive controllers operating within complex and highly dynamic problem domains such as Gas-Turbine Aero Engine control. Safety assurance arguments enabled by the framework necessary for certification are also outlined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis reviews the existing manufacturing control techniques and identifies their practical drawbacks when applied in a high variety, low and medium volume environment. It advocates that the significant drawbacks inherent in such systems, could impair their applications under such manufacturing environment. The key weaknesses identified in the system were: capacity insensitive nature of Material Requirements Planning (MRP); the centralised approach to planning and control applied in Manufacturing Resources Planning (MRP IT); the fact that Kanban can only be used in repetitive environments; Optimised Productivity Techniques's (OPT) inability to deal with transient bottlenecks, etc. On the other hand, cellular systems offer advantages in simplifying the control problems of manufacturing and the thesis reviews systems designed for cellular manufacturing including Distributed Manufacturing Resources Planning (DMRP) and Flexible Manufacturing System (FMS) controllers. It advocates that a newly developed cellular manufacturing control methodology, which is fully automatic, capacity sensitive and responsive, has the potential to resolve the core manufacturing control problems discussed above. It's development is envisaged within the framework of a DMRP environment, in which each cell is provided with its own MRP II system and decision making capability. It is a cellular based closed loop control system, which revolves on single level Bill-Of-Materials (BOM) structure and hence provides better linkage between shop level scheduling activities and relevant entries in the MPS. This provides a better prospect of undertaking rapid response to changes in the status of manufacturing resources and incoming enquiries. Moreover, it also permits automatic evaluation of capacity and due date constraints and hence facilitates the automation of MPS within such system. A prototype cellular manufacturing control model, was developed to demonstrate the underlying principles and operational logic of the cellular manufacturing control methodology, based on the above concept. This was shown to offer significant advantages from the prospective of operational planning and control. Results of relevant tests proved that the model is capable of producing reasonable due date and undertake automation of MPS. The overall performance of the model proved satisfactory and acceptable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research was instigated by the Civil Aviation Authority (CAA) to examine the implications for air traffic controllers' (ATCO) job satisfaction of the possible introduction of systems incorporating computer-assisted decision making. Additional research objectives were to assess the possible costs of reductions in ATCO job satisfaction, and to recommend appropriate task allocation between ATCOs and computer for future systems design (Chapter 1). Following a review of the literature (Chapter 2) it is argued that existing approaches to systems and job design do not allow for a sufficiently early consideration of employee needs and satisfactions in the design of complex systems. The present research develops a methodology for assessing affective reactions to an existing system as a basis for making reommendations for future systems design (Chapter 3). The method required analysis of job content using two techniques: (a) task analysis (Chapter 4.1) and (b) the Job Diagnostic Survey (JDS). ATCOs' affective reactions to the several operational positions on which they work were investigated at three levels of detail: (a) Reactions to positions, obtained by ranking techniques (Chapter 4.2); (b) Reactions to job characteristics, obtained by use of JDS (Chapter 4.3); and (c) Reactions to tasks, obtained by use of Repertory Grid technique (Chapter 4.4). The conclusion is drawn that ATCOs' motivation and satisfaction is greatly dependent on the presence of challenge, often through tasks requiring the use of decision making and other cognitive skills. Results suggest that the introduction of systems incorporating computer-assisted decision making might result in financial penalties for the CAA and significant reductions in job satisfaction for ATCOs. General recommendations are made for allocation of tasks in future systems design (Chapter 5).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is based upon a case study of the introduction of automated production technologies at the Longbridge plant of British Leyland in the period 1978 to 1980.The investment in automation was part of an overall programme of modernization to manufacture the new 'Mini Metro' model. In the first Section of the thesis, the different theoretical perspectives on technological change are discussed. Particular emphasis is placed upon the social role of management as the primary controllers of technological change. Their actions are seen to be oriented towards the overall strategy of the firm, integrating the firm's competitive strategy with production methods and techniques.This analysis is grounded in an examination of British Leyland's strategies during the 1970s.. The greater part of the thesis deals with the efforts made by management to secure their strategic objectives in the process of technological change against the conflicting claims of their work-force. Examination of these efforts is linked to the development of industrial relations conflict at Longbridge and in British Leyland as a whole.Emphasis is placed upon the struggle between management in pursuit of their version of efficiency and the trade unions in defence of job controls and demarcations. The thesis concludes that the process of technological change in the motor industry is controlled by social forces,with the introduction of new technologies being closely intertwined with management!s political relations with the trade unions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes work completed on the application of H controller synthesis to the design of controllers for single axis high speed independent drive design examples. H controller synthesis was used in a single controller format and in a self-tuning regulator, a type of adaptive controller. Three types of industrial design examples were attempted using H controller synthesis, both in simulation and on a Drives Test Facility at Aston University. The results were benchmarked against a Proportional, Integral and Derivative (PID) with velocity feedforward controller (VFF), the industrial standard for this application. An analysis of the differences between a H and PID with VFF controller was completed. A direct-form H controller was determined for a limited class of weighting function and plants which shows the relationship between the weighting function, nominal plant and the controller parameters. The direct-form controller was utilised in two ways. Firstly it allowed the production of simple guidelines for the industrial design of H controllers. Secondly it was used as the controller modifier in a self-tuning regulator (STR). The STR had a controller modification time (including nominal model parameter estimation) of 8ms. A Set-Point Gain Scheduling (SPGS) controller was developed and applied to an industrial design example. The applicability of each control strategy, PID with VFF, H, SPGS and STR, was investigated and a set of general guidelines for their use was determined. All controllers developed were implemented using standard industrial equipment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional machinery for manufacturing processes are characterised by actuators powered and co-ordinated by mechanical linkages driven from a central drive. Increasingly, these linkages are replaced by independent electrical drives, each performs a different task and follows a different motion profile, co-ordinated by computers. A design methodology for the servo control of high speed multi-axis machinery is proposed, based on the concept of a highly adaptable generic machine model. In addition to the dynamics of the drives and the loads, the model includes the inherent interactions between the motion axes and thus provides a Multi-Input Multi-Output (MIMO) description. In general, inherent interactions such as structural couplings between groups of motion axes are undesirable and needed to be compensated. On the other hand, imposed interactions such as the synchronisation of different groups of axes are often required. It is recognised that a suitable MIMO controller can simultaneously achieve these objectives and reconciles their potential conflicts. Both analytical and numerical methods for the design of MIMO controllers are investigated. At present, it is not possible to implement high order MIMO controllers for practical reasons. Based on simulations of the generic machine model under full MIMO control, however, it is possible to determine a suitable topology for a blockwise decentralised control scheme. The Block Relative Gain array (BRG) is used to compare the relative strength of closed loop interactions between sub-systems. A number of approaches to the design of the smaller decentralised MIMO controllers for these sub-systems has been investigated. For the purpose of illustration, a benchmark problem based on a 3 axes test rig has been carried through the design cycle to demonstrate the working of the design methodology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unmitigated transmission of undesirable vibration can result in problems by way of causing human discomfort, machinery and equipment failure, and affecting the quality of a manufacturing process. When identifiable transmission paths are discernible, vibrations from the source can be isolated from the rest of the system and this prevents or minimises the problems. The approach proposed here for vibration isolation is active force cancellation at points close to the vibration source. It uses force feedback for multiple-input and multiple-output control at the mounting locations. This is particularly attractive for rigid mounting of machine on relative flexible base where machine alignment and motions are to be restricted. The force transfer function matrix is used as a disturbance rejection performance specification for the design of MIMO controllers. For machine soft-mounted via flexible isolators, a model for this matrix has been derived. Under certain conditions, a simple multiplicative uncertainty model is obtained that shows the amount of perturbation a flexible base has on the machine-isolator-rigid base transmissibility matrix. Such a model is very suitable for use with robust control design paradigm. A different model is derived for the machine on hard-mounts without the flexible isolators. With this model, the level of force transmitted from a machine to a final mounting structure using the measurements for the machine running on another mounting structure can be determined. The two mounting structures have dissimilar dynamic characteristics. Experiments have verified the usefulness of the expression. The model compares well with other methods in the literature. The disadvantage lies with the large amount of data that has to be collected. Active force cancellation is demonstrated on an experimental rig using an AC industrial motor hard-mounted onto a relative flexible structure. The force transfer function matrix, determined from measurements, is used to design H and Static Output Feedback controllers. Both types of controllers are stable and robust to modelling errors within the identified frequency range. They reduce the RMS of transmitted force by between 30?80% at all mounting locations for machine running at 1340 rpm. At the rated speed of 1440 rpm only the static gain controller is able to provide 30?55% reduction at all locations. The H controllers on the other hand could only give a small reduction at one mount location. This is due in part to the deficient of the model used in the design. Higher frequency dynamics has been ignored in the model. This can be resolved by the use of a higher order model that can result in a high order controller. A low order static gain controller, with some tuning, performs better. But it lacks the analytical framework for analysis and design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the demonstration of an all-fiber femtosecond erbium doped fiber laser passively mode-locked using a 45º tilted fiber grating as an in-fiber polarizer in the laser cavity. The laser generates 600 fs pulses with output pulse energies ~1 nJ. Since the 45° tilted grating has a broad polarization response, the laser output has shown a tunabilty in wavelength from 1548 nm to 1562 nm by simply adjusting the polarization controllers in the cavity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Robust controllers for nonlinear stochastic systems with functional uncertainties can be consistently designed using probabilistic control methods. In this paper a generalised probabilistic controller design for the minimisation of the Kullback-Leibler divergence between the actual joint probability density function (pdf) of the closed loop control system, and an ideal joint pdf is presented emphasising how the uncertainty can be systematically incorporated in the absence of reliable systems models. To achieve this objective all probabilistic models of the system are estimated from process data using mixture density networks (MDNs) where all the parameters of the estimated pdfs are taken to be state and control input dependent. Based on this dependency of the density parameters on the input values, explicit formulations to the construction of optimal generalised probabilistic controllers are obtained through the techniques of dynamic programming and adaptive critic methods. Using the proposed generalised probabilistic controller, the conditional joint pdfs can be made to follow the ideal ones. A simulation example is used to demonstrate the implementation of the algorithm and encouraging results are obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper a new framework has been applied to the design of controllers which encompasses nonlinearity, hysteresis and arbitrary density functions of forward models and inverse controllers. Using mixture density networks, the probabilistic models of both the forward and inverse dynamics are estimated such that they are dependent on the state and the control input. The optimal control strategy is then derived which minimizes uncertainty of the closed loop system. In the absence of reliable plant models, the proposed control algorithm incorporates uncertainties in model parameters, observations, and latent processes. The local stability of the closed loop system has been established. The efficacy of the control algorithm is demonstrated on two nonlinear stochastic control examples with additive and multiplicative noise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The modern grid system or the smart grid is likely to be populated with multiple distributed energy sources, e.g. wind power, PV power, Plug-in Electric Vehicle (PEV). It will also include a variety of linear and nonlinear loads. The intermittent nature of renewable energies like PV, wind turbine and increased penetration of Electric Vehicle (EV) makes the stable operation of utility grid system challenging. In order to ensure a stable operation of the utility grid system and to support smart grid functionalities such as, fault ride-through, frequency response, reactive power support, and mitigation of power quality issues, an energy storage system (ESS) could play an important role. A fast acting bidirectional energy storage system which can rapidly provide and absorb power and/or VARs for a sufficient time is a potentially valuable tool to support this functionality. Battery energy storage systems (BESS) are one of a range suitable energy storage system because it can provide and absorb power for sufficient time as well as able to respond reasonably fast. Conventional BESS already exist on the grid system are made up primarily of new batteries. The cost of these batteries can be high which makes most BESS an expensive solution. In order to assist moving towards a low carbon economy and to reduce battery cost this work aims to research the opportunities for the re-use of batteries after their primary use in low and ultra-low carbon vehicles (EV/HEV) on the electricity grid system. This research aims to develop a new generation of second life battery energy storage systems (SLBESS) which could interface to the low/medium voltage network to provide necessary grid support in a reliable and in cost-effective manner. The reliability/performance of these batteries is not clear, but is almost certainly worse than a new battery. Manufacturers indicate that a mixture of gradual degradation and sudden failure are both possible and failure mechanisms are likely to be related to how hard the batteries were driven inside the vehicle. There are several figures from a number of sources including the DECC (Department of Energy and Climate Control) and Arup and Cenex reports indicate anything from 70,000 to 2.6 million electric and hybrid vehicles on the road by 2020. Once the vehicle battery has degraded to around 70-80% of its capacity it is considered to be at the end of its first life application. This leaves capacity available for a second life at a much cheaper cost than a new BESS Assuming a battery capability of around 5-18kWhr (MHEV 5kWh - BEV 18kWh battery) and approximate 10 year life span, this equates to a projection of battery storage capability available for second life of >1GWhrs by 2025. Moreover, each vehicle manufacturer has different specifications for battery chemistry, number and arrangement of battery cells, capacity, voltage, size etc. To enable research and investment in this area and to maximize the remaining life of these batteries, one of the design challenges is to combine these hybrid batteries into a grid-tie converter where their different performance characteristics, and parameter variation can be catered for and a hot swapping mechanism is available so that as a battery ends it second life, it can be replaced without affecting the overall system operation. This integration of either single types of batteries with vastly different performance capability or a hybrid battery system to a grid-tie 3 energy storage system is different to currently existing work on battery energy storage systems (BESS) which deals with a single type of battery with common characteristics. This thesis addresses and solves the power electronic design challenges in integrating second life hybrid batteries into a grid-tie energy storage unit for the first time. This study details a suitable multi-modular power electronic converter and its various switching strategies which can integrate widely different batteries to a grid-tie inverter irrespective of their characteristics, voltage levels and reliability. The proposed converter provides a high efficiency, enhanced control flexibility and has the capability to operate in different operational modes from the input to output. Designing an appropriate control system for this kind of hybrid battery storage system is also important because of the variation of battery types, differences in characteristics and different levels of degradations. This thesis proposes a generalised distributed power sharing strategy based on weighting function aims to optimally use a set of hybrid batteries according to their relative characteristics while providing the necessary grid support by distributing the power between the batteries. The strategy is adaptive in nature and varies as the individual battery characteristics change in real time as a result of degradation for example. A suitable bidirectional distributed control strategy or a module independent control technique has been developed corresponding to each mode of operation of the proposed modular converter. Stability is an important consideration in control of all power converters and as such this thesis investigates the control stability of the multi-modular converter in detailed. Many controllers use PI/PID based techniques with fixed control parameters. However, this is not found to be suitable from a stability point-of-view. Issues of control stability using this controller type under one of the operating modes has led to the development of an alternative adaptive and nonlinear Lyapunov based control for the modular power converter. Finally, a detailed simulation and experimental validation of the proposed power converter operation, power sharing strategy, proposed control structures and control stability issue have been undertaken using a grid connected laboratory based multi-modular hybrid battery energy storage system prototype. The experimental validation has demonstrated the feasibility of this new energy storage system operation for use in future grid applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical solitons are important in the modern photonics. Passively mode locked erbium doped fiber lasers provide a neat platform to study soliton dynamics. Soliton interaction dynamics is important for various applications and has quite different manifestations, including e.g. such as bound state solitons [1], soliton rains [2]. Soliton interactions have been observed with different mode locking approaches such as figure-of-eight [3] and nonlinear polarization rotation [4]. Carbon nanotubes (CNT) have recently been widely applied as an efficient saturable absorber for passively mode locked fiber lasers. We have recently studied the polarization dynamics in a CNT mode locked vector soliton erbium doped fiber laser [5]. So far, the polarization dynamics of bound state solitons have yet to be investigated. In this report, we present a wide range of polarization dynamics of bound state solitons generated in a CNT mode locked erbium doped fiber laser. The fiber laser consists of ∼ 2 m highly doped erbium fiber (Liekki Er80-8/125) as the gain medium, an optical isolator to ensure unidirectional oscillation anda 980 nm laser diode is used to pump the gain through the 1550/980 nm wavelength division multiplexer. A fused 10:90 coupler is used to couple 10 % of the light out of the laser cavity and two in-line polarization controllers (NewPort) are used to control the birefringence of the cavity and polarization of the pump light respectively. The total cavity length is ∼ 7.8 m indicating a 25.7 MHz fundamental repetition rate. © 2013 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation and evolution of bound dissipative pulses in the all-normal dispersion Yb-fiber laser based on a novel 45° tilted fiber grating (TFG) are first investigated both numerically and experimentally. Based on the nonlinear polarization rotation technique, the TFG and two polarization controllers (PCs) are exploited for stable self-started passive mode locking. Numerical results show that the formation of bound-state pulses in the all-normal dispersion region is the progress of soliton shaping through the dispersive waves and follows the soliton energy quantization effect. Theoretical and experimental results demonstrate that the formation mechanism of bound-state pulses can be attributed to the high pump strength and effective filter bandwidth. The obtained bound-state dissipative pulses with quasi-rectangular spectral profile have fixed pulse separation as a function of pump power. © 2013 Astro Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a novel real-time power-device temperature estimation method that monitors the power MOSFET's junction temperature shift arising from thermal aging effects and incorporates the updated electrothermal models of power modules into digital controllers. Currently, the real-time estimator is emerging as an important tool for active control of device junction temperature as well as online health monitoring for power electronic systems, but its thermal model fails to address the device's ongoing degradation. Because of a mismatch of coefficients of thermal expansion between layers of power devices, repetitive thermal cycling will cause cracks, voids, and even delamination within the device components, particularly in the solder and thermal grease layers. Consequently, the thermal resistance of power devices will increase, making it possible to use thermal resistance (and junction temperature) as key indicators for condition monitoring and control purposes. In this paper, the predicted device temperature via threshold voltage measurements is compared with the real-time estimated ones, and the difference is attributed to the aging of the device. The thermal models in digital controllers are frequently updated to correct the shift caused by thermal aging effects. Experimental results on three power MOSFETs confirm that the proposed methodologies are effective to incorporate the thermal aging effects in the power-device temperature estimator with good accuracy. The developed adaptive technologies can be applied to other power devices such as IGBTs and SiC MOSFETs, and have significant economic implications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multipurpose open architecture motion control system was developed with three platforms for control and monitoring. The Visual Basic user interface communicated with the operator and gave instructions to the electronic components. The first platform had a BASIC Stamp based controller and three stepping motors. The second platform had a controller, amplifiers and two DC servomotors. The third platform had a DSP module. In this study, each platform was used on machine tools either to move the table or to evaluate the incoming signal. The study indicated that by using advanced microcontrollers, which use high-level languages, motor controllers, DSPs (Digital Signal Processor) and microcomputers, the motion control of different systems could be realized in a short time. Although, the proposed systems had some limitations, their jobs were performed effectively. ^