933 resultados para Molecular interaction
Resumo:
The identification of molecular processes involved in cancer development and prognosis opened avenues for targeted therapies, which made treatment more tumor-specific and less toxic than conventional therapies. One important example is the epidermal growth factor receptor (EGFR) and EGFR-specific inhibitors (i.e. erlotinib). However, challenges such as drug resistance still remain in targeted therapies. Therefore, novel candidate compounds and new strategies are needed for improvement of therapy efficacy. Shikonin and its derivatives are cytotoxic constituents in traditional Chinese herbal medicine Zicao (Lithospermum erythrorhizin). In this study, we investigated the molecular mechanisms underlying the anti-cancer effects of shikonin and its derivatives in glioblastoma cells and leukemia cells. Most of shikonin derivatives showed strong cytotoxicity towards erlotinib-resistant glioblastoma cells, especially U87MG.ΔEGFR cells which overexpressed a deletion-activated EGFR (ΔEGFR). Moreover, shikonin and some derivatives worked synergistically with erlotinib in killing EGFR-overexpressing cells. Combination treatment with shikonin and erlotinib overcame the drug resistance of these cells to erlotinib. Western blotting analysis revealed that shikonin inhibited ΔEGFR phosphorylation and led to corresponding decreases in phosphorylation of EGFR downstream molecules. By means of Loewe additivity and Bliss independence drug interaction models, we found erlotinb and shikonin or its derivatives corporately suppressed ΔEGFR phosphorylation. We believed this to be a main mechanism responsible for their synergism in U87MG.ΔEGFR cells. In leukemia cells, which did not express EGFR, shikonin and its derivatives exhibited even greater cytotoxicity, suggesting the existence of other mechanisms. Microarray-based gene expression analysis uncovered the transcription factor c-MYC as the commonly deregulated molecule by shikonin and its derivatives. As validated by Western blotting analysis, DNA-binding assays and molecular docking, shikonin and its derivatives bound and inhibited c-MYC. Furthermore, the deregulation of ERK, JNK MAPK and AKT activity was closely associated with the reduction of c-MYC, indicating the involvement of these signaling molecules in shikonin-triggered c-MYC inactivation. In conclusion, the inhibition of EGFR signaling, synergism with erlotinib and targeting of c-MYC illustrate the multi-targeted feature of natural naphthoquinones such as shikonin and derivatives. This may open attractive possibilities for their use in a molecular targeted cancer therapy.
Resumo:
"Silent mating type information regulation 2 Type" 1 (SIRT1), das humane Homolog der NAD+-abhängigen Histondeacetylase Sir2 aus Hefe, besitzt Schlüsselfunktionen in der Regulation des Metabolismus, der Zellalterung und Apoptose. Letztere wird vor allem durch die Deacetylierung von p53 an Lys382 und der dadurch verringerten Transkription proapoptotischer Zielgene vermittelt. Im Rahmen der vorliegenden Arbeit wurde die SIRT1 Regulation im Zusammenhang mit der DNA-Schadensantwort untersucht.rnIn der Apoptoseregulation übernimmt die Serin/Threonin-Kinase "Homeodomain interacting protein kinase" 2 (HIPK2) eine zentrale Rolle und daher wurde die SIRT1 Modifikation und Regulation durch HIPK2 betrachtet. Durch Phosphorylierung des Tumorsuppressorproteins p53 an Ser46 aktiviert HIPK2 das Zielprotein und induziert die Transkription proapoptotischer Zielgene von p53. Es wurde beschrieben, dass HIPK2 nach DNA-Schädigung über einen bisher unbekannten Mechnismus die Acetylierung von p53 potenzieren kann.rnIn der vorliegenden Arbeit konnte gezeigt werden, dass SIRT1 von HIPK2 in vitro und in Zellen an Serin 27 und 682 phosphoryliert wird. Weiterhin ist die Interaktion von SIRT1 mit HIPK2 sowie die SIRT1 Phosphorylierung an Serin 682 durch DNA-schädigende Adriamycinbehandlung erhöht. Es gibt Hinweise, dass HIPK2 die Expression von SIRT1 reguliert, da HIPK2 RNA-Interferenz zur Erniedrigung der SIRT1 Protein- und mRNA-Mengen führt.rnEin weiterer interessanter Aspekt liegt in der Beobachtung, dass Ko-Expression von PML-IV, welches SIRT1 sowie HIPK2 in PML-Kernkörper rekrutiert, die SIRT1 Phosphorylierung an Serin 682 verstärkt. Phosphorylierung von SIRT1 an Serin 682 interferiert wiederum mit der SUMO-1 Modifikation, welche für die Lokalisation in PML-Kernkörpen wichtig ist.rnBemerkenswerterweise reduziert die DNA-schadendsinduzierte SIRT1 Phosphorylierung die Bindung des SIRT1 Ko-Aktivators AROS, beeinflusst aber nicht diejenige des Inhibitors DBC1. Dies führt zur Reduktion der enzymatischen Aktivität von SIRT1 und der darausfolgenden weniger effizienten Deacetylierung des Zielproteins p53.rnDurch die von mir in der vorliegenden Promotionsarbeit erzielten Ergebnisse konnte ein neuer molekularer Mechanismus entschlüsselt werden, welcher die durch HIPK2 modulierte Acetylierung von p53 und die daran anschließende Induktion der Apoptose beschreibt.rnHIPK2-vermittelte SIRT1 Phosphorylierung resultiert in einer verminderten Deacetylasefunktion von SIRT1 und führt so zu einer verstärkten acetylierungsinduzierten Expression proapoptotischer p53 Zielgene.
Resumo:
Coarse graining is a popular technique used in physics to speed up the computer simulation of molecular fluids. An essential part of this technique is a method that solves the inverse problem of determining the interaction potential or its parameters from the given structural data. Due to discrepancies between model and reality, the potential is not unique, such that stability of such method and its convergence to a meaningful solution are issues.rnrnIn this work, we investigate empirically whether coarse graining can be improved by applying the theory of inverse problems from applied mathematics. In particular, we use the singular value analysis to reveal the weak interaction parameters, that have a negligible influence on the structure of the fluid and which cause non-uniqueness of the solution. Further, we apply a regularizing Levenberg-Marquardt method, which is stable against the mentioned discrepancies. Then, we compare it to the existing physical methods - the Iterative Boltzmann Inversion and the Inverse Monte Carlo method, which are fast and well adapted to the problem, but sometimes have convergence problems.rnrnFrom analysis of the Iterative Boltzmann Inversion, we elaborate a meaningful approximation of the structure and use it to derive a modification of the Levenberg-Marquardt method. We engage the latter for reconstruction of the interaction parameters from experimental data for liquid argon and nitrogen. We show that the modified method is stable, convergent and fast. Further, the singular value analysis of the structure and its approximation allows to determine the crucial interaction parameters, that is, to simplify the modeling of interactions. Therefore, our results build a rigorous bridge between the inverse problem from physics and the powerful solution tools from mathematics. rn
Resumo:
The importance of pyrazole and lactam-based molecules in medical and pharmaceutical fields is underlined by the multitude of active ingredients on trade, such as Sildenafil or Apixaban, by Pfizer. In this work, a synthesis of an organic molecule with promising anticancer activity has been developed. This molecular scaffold is characterized by a δ-lactam-fused pyrazolic core, with a well-known biological activity and amenable of further functionalization. The synthetic strategy adopted for the obtainment of the core was based on a 1,3-dipolar cycloaddition of a nitrilimine with an α,β-unsaturated δ-lactam. Secondly, in order to give the final compound an elevated pharmacological activity, a functionalization with a double “side chain”, namely molecular fragment able to improve the interaction with particular biological receptors, was achieved. The target compound was thus obtained, with a highly convergent synthesis, and will be tested for antiproliferative activities towards different cellular lines.
Resumo:
During pregnancy, the fetus represents a natural allograft that is not normally rejected. While the maternal immune system retains the ability to respond to foreign antigens, tolerance mechanisms are up-regulated to protect the fetus from immunologic attacks by the mother. The profound immunologic adaptations during and after pregnancy do influence maternal autoimmune rheumatic diseases in several ways. One is triggering the onset of a rheumatic disease in the post partum period, the other influencing disease activity of established rheumatic disease. The review will discuss the mechanisms of increased susceptibility of rheumatoid arthritis (RA) in the first year post partum with a specific emphasis on the role of fetal cells or antigens persisting in the maternal circulation (so called microchimerism). Furthermore, the different influences of pregnancy on established rheumatic diseases will be highlighted. A marked beneficial effect of pregnancy is observed on RA whereas several other rheumatic diseases as ankylosing spondylitis (AS) and systemic lupus erythematosus (SLE) show either no particular effect or an aggravation of symptoms during pregnancy. Differences emerging in regard to modulation of disease symptoms during pregnancy seem related to response to hormones, the type of cytokine profile and immune response prevailing as well as further downstream interactions of molecular pathways that are important in disease pathogenesis.
Resumo:
Macrophage Migration Inhibitory Factor (MIF) is a key mediator of inflammatory responses and innate immunity and has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. The oligomerization of MIF, more specifically trimer formation, is essential for its keto-enol tautomerase activity and probably mediates several of its interactions and biological activities, including its binding to its receptor CD74 and activation of certain signaling pathways. Therefore, understanding the molecular factors governing the oligomerization of MIF and the role of quaternary structure in modulating its structural stability and multifunctional properties is crucial for understanding the function of MIF in health and disease. Herein, we describe highly conserved intersubunit interactions involving the hydrophobic packing of the side chain of Leu46 onto the β-strand β3 of one monomer within a hydrophobic pocket from the adjacent monomer constituted by residues Arg11, Val14, Phe18, Leu19, Val39, His40, Val41, Val42, and Pro43. To elucidate the structural significance of these intersubunit interactions and their relative contribution to MIF’s trimerization, structural stability and catalytic activity, we generated three point mutations where Leu46 was replaced by glycine (L46G), alanine (L46A) and phenylalanine (L46F), and their structural properties, stability, oligomerization state, and catalytic activity were characterized using a battery of biophysical methods and X-ray crystallography. Our findings provide new insights into the role of the Leu46 hydrophobic pocket in stabilizing the conformational state of MIF in solution. Disrupting the Leu46 hydrophobic interaction perturbs the secondary and tertiary structure of the protein but has no effect on its oligomerization state.
Resumo:
In the healthy individuum lymphocyte traffic into the central nervous system (CNS) is very low and tightly controlled by the highly specialized blood-brain barrier (BBB). In contrast, under inflammatory conditions of the CNS such as in multiple sclerosis or in its animal model experimental autoimmune encephalomyelitis (EAE) circulating lymphocytes and monocytes/macrophages readily cross the BBB and gain access to the CNS leading to edema, inflammation and demyelination. Interaction of circulating leukocytes with the endothelium of the blood-spinal cord and blood-brain barrier therefore is a critical step in the pathogenesis of inflammatory diseases of the CNS. Leukocyte/endothelial interactions are mediated by adhesion molecules and chemokines and their respective chemokine receptors. We have developed a novel spinal cord window preparation, which enables us to directly visualize CNS white matter microcirculation by intravital fluorescence videomicroscopy. Applying this technique of intravital fluorescence videomicroscopy we could provide direct in vivo evidence that encephalitogenic T cell blasts interact with the spinal cord white matter microvasculature without rolling and that alpha4-integrin mediates the G-protein independent capture and subsequently the G-protein dependent adhesion strengthening of T cell blasts to microvascular VCAM-1. LFA-1 was found to neither mediate the G-protein independent capture nor the G- protein dependent initial adhesion strengthening of encephalitogenic T cell blasts within spinal cord microvessel, but was rather involved in T cell extravasation across the vascular wall into the spinal cord parenchyme. Our observation that G-protein mediated signalling is required to promote adhesion strengthening of encephalitogenic T cells on BBB endothelium in vivo suggested the involvement of chemokines in this process. We found functional expression of the lymphoid chemokines CCL19/ELC and CCL21/SLC in CNS venules surrounded by inflammatory cells in brain and spinal cord sections of mice afflicted with EAE suggesting that the lymphoid chemokines CCL19 and CCL21 besides regulating lymphocyte homing to secondary lymphoid tissue might be involved in T lymphocyte migration into the immuneprivileged CNS during immunosurveillance and chronic inflammation. Here, I summarize our current knowledge on the sequence of traffic signals involved in T lymphocyte recruitment across the healthy and inflamed blood-brain and blood-spinal cord barrier based on our in vitro and in vivo investigations.
Resumo:
In the context of drug hypersensitivity, our group has recently proposed a new model based on the structural features of drugs (pharmacological interaction with immune receptors; p-i concept) to explain their recognition by T cells. According to this concept, even chemically inert drugs can stimulate T cells because certain drugs interact in a direct way with T-cell receptors (TCR) and possibly major histocompatibility complex molecules without the need for metabolism and covalent binding to a carrier. In this study, we investigated whether mouse T-cell hybridomas transfected with drug-specific human TCR can be used as an alternative to drug-specific T-cell clones (TCC). Indeed, they behaved like TCC and, in accordance with the p-i concept, the TCR recognize their specific drugs in a direct, processing-independent, and dose-dependent way. The presence of antigen-presenting cells was a prerequisite for interleukin-2 production by the TCR-transfected cells. The analysis of cross-reactivity confirmed the fine specificity of the TCR and also showed that TCR transfectants might provide a tool to evaluate the potential of new drugs to cause hypersensitivity due to cross-reactivity. Recombining the alpha- and beta-chains of sulfanilamide- and quinolone-specific TCR abrogated drug reactivity, suggesting that both original alpha- and beta-chains were involved in drug binding. The TCR-transfected hybridoma system showed that the recognition of two important classes of drugs (sulfanilamides and quinolones) by TCR occurred according to the p-i concept and provides an interesting tool to study drug-TCR interactions and their biological consequences and to evaluate the cross-reactivity potential of new drugs of the same class.
Resumo:
Larval infection with Echinococcus multilocularis starts with the intrahepatic postoncospheral development of a metacestode that-at its mature stage-consists of an inner germinal and an outer laminated layer (GL ; LL). In certain cases, an appropriate host immune response may inhibit parasite proliferation. Several lines of evidence obtained in vivo and in vitro indicate the important bio-protective role of the LL. For instance, the LL has been proposed to protect the GL from nitric oxide produced by periparasitic macrophages and dendritic cells, and also to prevent immune recognition by surrounding T cells. On the other hand, the high periparasitic NO production by peritoneal exsudate cells contributes to periparasitic immunosuppression, explaining why iNOS deficienct mice exhibit a significantly lower susceptibility towards experimental infection. The intense periparasitic granulomatous infiltration indicates a strong host-parasite interaction, and the involvement of cellular immunity in control of the metacestode growth kinetics is strongly suggested by experiments carried out in T cell deficient mouse strains. Carbohydrate components of the LL, such as Em2(G11) and Em492, as well as other parasite metabolites yield immunomodulatory effects that allow the parasite to survive in the host. I.e., the IgG response to the Em2(G11)-antigen takes place independently of alpha-beta+CD4+T cells, and in the absence of interactions between CD40 and CD40 ligand. Such parasite molecules also interfere with antigen presentation and cell activation, leading to a mixed Th1/Th2-type response at the later stage of infection. Furthermore, Em492 and other (not yet published) purified parasite metabolites suppress ConA and antigen-stimulated splenocyte proliferation. Infected mouse macrophages (AE-MØ) as antigen presenting cells (APC) exhibited a reduced ability to present a conventional antigen (chicken ovalbumin, C-Ova) to specific responder lymph node T cells when compared to normal MØ. As AE-MØ fully maintain their capacity to appropriately process antigens, a failure in T cell receptor occupancy by antigen-Ia complex or/and altered co-stimulatory signals can be excluded. Studying the status of accessory molecules implicated in T cell stimulation by MØ, it could be shown that B7-1 (CD80) and B7-2 (CD86) remained unchanged, whereas CD40 was down-regulated and CD54 (=ICAM-1) slightly up-regulated. FACS analysis of peritoneal cells revealed a decrease in the percentage of CD4+ and CD8+T cells in AE-infected mice. Taken together the obstructed presenting-activity of AE-MØ appeared to trigger an unresponsiveness of T cells leading to the suppression of their clonal expansion during the chronic phase of AE infection. Interesting information on the parasite survival strategy and potential can be obtained upon in vitro and in vivo treatment. Hence, we provided very innovative results by showing that nitazoxanide, and now also, respectively, new modified compounds may represent a useful alternative to albendazole. In the context of chemotherapeutical repression of parasite growth, we searched also for parasite molecules, whose expression levels correlate with the viability and growth activity of E. multilocularis metacestode. Expression levels of 14-3-3 and II/3-10, relatively quantified by realtime reverse transcription-PCR using a housekeeping gene beta-actin, were studied in permissive nu/nu and in low-permissive wild type BALB/c mice. At 2 months p.i., the transcription level of 14-3-3 was significantly higher in parasites actively proliferating in nu/nu mice compared to parasites moderately growing in wild type mice. Immunoblotting experiments confirmed at the protein level that 14-3-3 was over-expressed in parasites derived from nu/nu mice at 2 months p.i. In vitro-treatment of E. multilocularis with an anti-echinococcal drug nitazoxanide for a period of 8 days resulted in a significant decrease of both 14-3-3 and II/3-10 transcription levels,
Resumo:
Leukocyte-platelet interaction is important in mediating leukocyte adhesion to a thrombus and leukocyte recruitment to a site of vascular injury. This interaction is mediated at least in part by the beta2-integrin Mac-1 (CD11b/CD18) and its counter-receptor on platelets, glycoprotein Ibalpha (GPIbalpha). High molecular weight kininogen (HK) was previously shown to interact with both GPIbalpha and Mac-1 through its domains 3 and 5, respectively. In this study we investigated the ability of HK to interfere with the leukocyte-platelet interaction. In a purified system, HK binding to GPIbalpha was inhibited by HK domain 3 and the monoclonal antibody (mAb) SZ2, directed against the epitope 269-282 of GPIbalpha, whereas mAb AP1, directed to the region 201-268 of GPIbalpha had no effect. In contrast, mAb AP1 inhibited the Mac-1-GPIbalpha interaction. Binding of GPIbalpha to Mac-1 was enhanced 2-fold by HK. This effect of HK was abrogated in the presence of HK domains 3 or 5 or peptides from the 475-497 region of the carboxyl terminus of domain 5 as well as in the presence of mAb SZ2 but not mAb AP1. Whereas no difference in the affinity of the Mac-1-GPIbalpha interaction was observed in the absence or presence of HK, maximal binding of GPIbalpha to Mac-1 doubled in the presence of HK. Moreover, HK/HKa increased the Mac-1-dependent adhesion of myelomonocytic U937 cells and K562 cells transfected with Mac-1 to immobilized GPIbalpha or to GPIbalpha-transfected Chinese hamster ovary cells. Finally, Mac-1-dependent adhesion of neutrophils to surface-adherent platelets was enhanced by HK. Thus, HK can bridge leukocytes with platelets by interacting via its domain 3 with GPIbalpha and via its domain 5 with Mac-1 thereby augmenting the Mac-1-GPIbalpha interaction. These distinct molecular interactions of HK with leukocytes and platelets contribute to the regulation of the adhesive behavior of vascular cells and provide novel molecular targets for reducing atherothrombotic pathologies.
Resumo:
The craze for faster and smaller electronic devices has never gone down and this has always kept researchers on their toes. Following Moore’s law, which states that the number of transistors in a single chip will double in every 18 months, today “30 million transistors can fit into the head of a 1.5 mm diameter pin”. But this miniaturization cannot continue indefinitely due to the ‘quantum leakage’ limit in the thickness of the insulating layer between the gate electrode and the current carrying channel. To bypass this limitation, scientists came up with the idea of using vastly available organic molecules as components in an electronic device. One of the primary challenges in this field was the ability to perform conductance measurements across single molecular junctions. Once that was achieved the focus shifted to a deeper understanding of the underlying physics behind the electron transport across these molecular scale devices. Our initial theoretical approach is based on the conventional Non-Equilibrium Green Function(NEGF) formulation, but the self-energy of the leads is modified to include a weighting factor that ensures negligible current in the absence of a molecular pathway as observed in a Mechanically Controlled Break Junction (MCBJ) experiment. The formulation is then made parameter free by a more careful estimation of the self-energy of the leads. The calculated conductance turns out to be atleast an order more than the experimental values which is probably due to a strong chemical bond at the metal-molecule junction unlike in the experiments. The focus is then shifted to a comparative study of charge transport in molecular wires of different lengths within the same formalism. The molecular wires, composed of a series of organic molecules, are sanwiched between two gold electrodes to make a two terminal device. The length of the wire is increased by sequentially increasing the number of molecules in the wire from 1 to 3. In the low bias regime all the molecular devices are found to exhibit Ohmic behavior. However, the magnitude of conductance decreases exponentially with increase in length of the wire. In the next study, the relative contribution of the ‘in-phase’ and the ‘out-of-phase’ components of the total electronic current under the influence of an external bias is estimated for the wires of three different lengths. In the low bias regime, the ‘out-of-phase’ contribution to the total current is minimal and the ‘in-phase’ elastic tunneling of the electrons is responsible for the net electronic current. This is true irrespective of the length of the molecular spacer. In this regime, the current-voltage characteristics follow Ohm’s law and the conductance of the wires is found to decrease exponentially with increase in length which is in agreement with experimental results. However, after a certain ‘off-set’ voltage, the current increases non-linearly with bias and the ‘out-of-phase’ tunneling of electrons reduces the net current substantially. Subsequently, the interaction of conduction electrons with the vibrational modes as a function of external bias in the three different oligomers is studied since they are one of the main sources of phase-breaking scattering. The number of vibrational modes that couple strongly with the frontier molecular orbitals are found to increase with length of the spacer and the external field. This is consistent with the existence of lowest ‘off-set’ voltage for the longest wire under study.
Resumo:
The transmembrane ligand ephrinB2 and its cognate Eph receptor tyrosine kinases are important regulators of embryonic blood vascular morphogenesis. However, the molecular mechanisms required for ephrinB2 transduced cellular signaling in vivo have not been characterized. To address this question, we generated two sets of knock-in mice: ephrinB2DeltaV mice expressed ephrinB2 lacking the C-terminal PDZ interaction site, and ephrinB2(5F) mice expressed ephrinB2 in which the five conserved tyrosine residues were replaced by phenylalanine to disrupt phosphotyrosine-dependent signaling events. Our analysis revealed that the homozygous mutant mice survived the requirement of ephrinB2 in embryonic blood vascular remodeling. However, ephrinB2DeltaV/DeltaV mice exhibited major lymphatic defects, including a failure to remodel their primary lymphatic capillary plexus into a hierarchical vessel network, hyperplasia, and lack of luminal valve formation. Unexpectedly, ephrinB2(5F/5F) mice displayed only a mild lymphatic phenotype. Our studies define ephrinB2 as an essential regulator of lymphatic development and indicate that interactions with PDZ domain effectors are required to mediate its functions.
Resumo:
Cytochrome P450c17 catalyzes steroidogenic 17alpha-hydroxylase and 17,20 lyase activities. Expression of the gene for P450c17 is cAMP dependent, tissue specific, developmentally programmed, and varies among species. Binding of Sp1, Sp3, and NF1-C (nuclear factor 1-C) to the first 227 bp of 5'flanking DNA (-227/LUC) is crucial for basal transcription in human NCI-H295A adrenal cells. Human placental JEG-3 cells contain Sp1, Sp3, and NF1, but do not express -227/LUC, even when transfected with a vector expressing steroidogenic factor 1 (SF-1). Therefore, other factors are essential for basal expression of P450c17. Deoxyribonuclease I footprinting and EMSAs identified a GATA consensus site at -64/-58 and an SF-1 site at -58/-50. RT-PCR identified GATA-4, GATA-6, and SF-1 in NCI-H295A cells and GATA-2 and GATA-3, but not GATA-4, GATA-6, or SF-1 in JEG-3 cells. Cotransfection of either GATA-4 or GATA-6 without SF-1 activated -227/LUC in JEG-3 cells, but cotransfection of GATA-2 or GATA-3 with or without SF-1 did not. Surprisingly, mutation of the GATA binding site in -227/LUC increased GATA-4 or GATA-6 induced activity, whereas mutation of the Sp1/Sp3 site decreased it. Furthermore, promoter constructs including the GATA site, but excluding the Sp1/Sp3 site at -196/-188, were not activated by GATA-4 or GATA-6, suggesting an interaction between Sp1/Sp3 and GATA-4 or GATA-6. Glutathione-S-transferase pull-down experiments and coimmunoprecipitation demonstrated interaction between GATA-4 or GATA-6 and Sp1, but not Sp3. Chromatin immunoprecipitation assays confirmed that this GATA-4/6 interaction with Sp1 occurred at the Sp site in the P450c17 promoter in NCI-H295A cells. Demethylation with 5-aza-2-deoxycytidine permitted JEG-3 cells to express endogenous P450c17, SF-1, GATA-4, GATA-6, and transfected -227/LUC. Thus, GATA-4 or GATA-6 and Sp1 together regulate expression of P450c17 in adrenal NCI-H295A cells and methylation of P450c17, GATA-4 and GATA-6 silence the expression of P450c17 in placental JEG-3 cells.
Resumo:
Voltage-dependent calcium channels (VDCCs) serve a wide range of physiological functions and their activity is modulated by different neurotransmitter systems. GABAergic inhibition of VDCCs in neurons has an important impact in controlling transmitter release, neuronal plasticity, gene expression and neuronal excitability. We investigated the molecular signalling mechanisms by which GABAB receptors inhibit calcium-mediated electrogenesis (Ca2+ spikes) in the distal apical dendrite of cortical layer 5 pyramidal neurons. Ca2+ spikes are the basis of coincidence detection and signal amplification of distal tuft synaptic inputs characteristic for the computational function of cortical pyramidal neurons. By combining dendritic whole-cell recordings with two-photon fluorescence Ca2+ imaging we found that all subtypes of VDCCs were present in the Ca2+ spike initiation zone, but that they contribute differently to the initiation and sustaining of dendritic Ca2+ spikes. Particularly, Cav1 VDCCs are the most abundant VDCC present in this dendritic compartment and they generated the sustained plateau potential characteristic for the Ca2+ spike. Activation of GABAB receptors specifically inhibited Cav1 channels. This inhibition of L-type Ca2+ currents was transiently relieved by strong depolarization but did not depend on protein kinase activity. Therefore, our findings suggest a novel membrane-delimited interaction of the Gi/o-βγ-subunit with Cav1 channels identifying this mechanism as the general pathway of GABAB receptor-mediated inhibition of VDCCs. Furthermore, the characterization of the contribution of the different VDCCs to the generation of the Ca2+ spike provides new insights into the molecular mechanism of dendritic computation.