901 resultados para Molecular Dynamic Simulations
Resumo:
Understanding the interfacial interactions between the nanofiller and polymer matrix is important to improve the design and manufacture of polymer nanocomposites. This paper reports a molecular dynamic Study on the interfacial interactions and structure of a clay-based polyurethane intercalated nanocomposite. The results show that the intercalation of surfactant (i.e. dioctadecyldlmethyl ammonium) and polyurethane (PU) into the nanoconfined gallery of clay leads to the multilayer structure for both surfactant and PU, and the absence of phase separation for PU chains. Such structural characteristics are attributed to the result of competitive interactions among the surfactant, PU and the clay surface, including van der Waals, electrostatic and hydrogen bonding.
Resumo:
Molecular dynamics simulations of the magainin MG-H2 peptide interacting with a model phospholipid membrane have been used to investigate the mechanism by which antimicrobial peptides act. Multiple copies of the peptide were randomly placed in solution close to the membrane. The peptide readily bound to the membrane, and above a certain concentration, the peptide was observed to cooperatively induce the formation of a nanometer- sized, toroidally shaped pore in the bilayer. In sharp contrast with the commonly accepted model of a toroidal pore, only one peptide was typically found near the center of the pore. The remaining peptides lay close to the edge of the pore, maintaining a predominantly parallel orientation with respect to the membrane.
Resumo:
The RKKEE cluster of charged residues located within the cytoplasmic helix of the bacterial mechanosensitive channel, MscL, is essential for the channel function. The structure of MscL determined by x-ray crystallography and electron paramagnetic resonance spectroscopy has revealed discrepancies toward the C-terminus suggesting that the structure of the C-terminal helical bundle differs depending on the pH of the cytoplasm. In this study we examined the effect of pH as well as charge reversal and residue substitution within the RKKEE cluster on the mechanosensitivity of Escherichia coli MscL reconstituted into liposomes using the patch-clamp technique. Protonation of either positively or negatively charged residues within the cluster, achieved by changing the experimental pH or residue substitution within the RKKEE cluster, significantly increased the free energy of activation for the MscL channel due to an increase in activation pressure. Our data suggest that the orientation of the C-terminal helices relative to the aqueous medium is pH dependent, indicating that the RKKEE cluster functions as a proton sensor by adjusting the channel sensitivity to membrane tension in a pH-dependent fashion. A possible implication of our results for the physiology of bacterial cells is briefly discussed.
Resumo:
Molecular dynamics simulations have been used to study the phase behavior of a dipalmitoylphosphatidylcholine (DPPC)/palmitic acid (PA)/water 1:2:20 mixture in atomic detail. Starting from a random solution of DPPC and PA in water, the system adopts either a gel phase at temperatures below similar to 330 K or an inverted hexagonal phase above similar to 330 K in good agreement with experiment. It has also been possible to observe the direct transformation from a gel to an inverted hexagonal phase at elevated temperature (similar to 390 K). During this transformation, a metastable fluid lamellar intermediate is observed. Interlamellar connections or stalks form spontaneously on a nanosecond time scale and subsequently elongate, leading to the formation of an inverted hexagonal phase. This work opens the possibility of studying in detail how the formation of nonlamellar phases is affected by lipid composition and (fusion) peptides and, thus, is an important step toward understanding related biological processes, such as membrane fusion.
Resumo:
Quantitatively predicting mass transport rates for chemical mixtures in porous materials is important in applications of materials such as adsorbents, membranes, and catalysts. Because directly assessing mixture transport experimentally is challenging, theoretical models that can predict mixture diffusion coefficients using Only single-component information would have many uses. One such model was proposed by Skoulidas, Sholl, and Krishna (Langmuir, 2003, 19, 7977), and applications of this model to a variety of chemical mixtures in nanoporous materials have yielded promising results. In this paper, the accuracy of this model for predicting mixture diffusion coefficients in materials that exhibit a heterogeneous distribution of local binding energies is examined. To examine this issue, single-component and binary mixture diffusion coefficients are computed using kinetic Monte Carlo for a two-dimensional lattice model over a wide range of lattice occupancies and compositions. The approach suggested by Skoulidas, Sholl, and Krishna is found to be accurate in situations where the spatial distribution of binding site energies is relatively homogeneous, but is considerably less accurate for strongly heterogeneous energy distributions.
Resumo:
Molecular dynamics simulations of rigid, defect-free single-walled carbon nanotubes have previously suggested that the transport diffusivity of gases adsorbed in these materials can be orders of magnitude higher than any other nanoporous material (A. I. Skoulidas et al., Phys. Rev. Lett. 2002, 89, 185901). These simulations must overestimate the molecular diffusion coefficients because they neglect energy exhange between the diffusing molecules and the nanotube. Recently, Jakobtorweihen et al. have reported careful simulations of molecular self-diffusion that allow nanotube flexibility (Phys. Rev. Lett. 2005, 95, 044501). We have used the efficient thermostat developed by Jakobtorweihen et al. to examine the influence of nanotube flexibility on the transport diffusion of CH4 in (20,0) and (15,0) nanotubes. The inclusion of nanotube flexibility reduces the transport diffusion relative to the rigid nanotube by roughly an order of magnitude close to zero pressure, but at pressures above about I bar the transport diffusivities for flexible and rigid nanotubes are very similar, differing by less than a factor or two on average. Hence, the transport diffusivities are still extremely large compared to other known materials when flexibility is taken into account.
Resumo:
A theory is discussed of single-component transport in nanopores, recently developed by Bhatia and coworkers. The theory considers the oscillatory motion of molecules between diffuse wall collisions, arising from the fluid-wall interaction, along with superimposed viscous flow due to fluid-fluid interaction. The theory is tested against molecular dynamics simulations for hydrogen, methane, and carbon tetrafluoride flow in cylindrical nanopores in silica. Although exact at low densities, the theory performs well even at high densities, with the density dependency of the transport coefficient arising from viscous effects. Such viscous effects are reduced at high densities because of the large increase in viscosity, which explains the maximum in the transport coefficient with increase in density. Further, it is seen that in narrow pore sizes of less than two molecular diameters, where a complete monolayer cannot form on the surface, the mutual interference of molecules on opposite sides of the cross section can reduce the transport coefficient, and lead to a maximum in the transport coefficient with increasing density. The theory is also tested for the case of partially diffuse reflection and shows the viscous contribution to be negligible when the reflection is nearly specular. (c) 2005 American Institute of Chemical Engineers AIChE J, 52: 29-38, 2006.
Resumo:
A new integration scheme is developed for nonequilibrium molecular dynamics simulations where the temperature is constrained by a Gaussian thermostat. The utility of the scheme is demonstrated by its application to the SLLOD algorithm which is the standard nonequilibrium molecular dynamics algorithm for studying shear flow. Unlike conventional integrators, the new integrators are constructed using operator-splitting techniques to ensure stability and that little or no drift in the kinetic energy occurs. Moreover, they require minimum computer memory and are straightforward to program. Numerical experiments show that the efficiency and stability of the new integrators compare favorably with conventional integrators such as the Runge-Kutta and Gear predictor-corrector methods. (C) 1999 American Institute of Physics. [S0021-9606(99)50125-6].
Resumo:
Molecular dynamics simulations were carried out for Si/Ge axial nanowire heterostructures using modified effective atom method (MEAM) potentials. A Si–Ge MEAM interatomic cross potential was developed based on available experimental data and was used for these studies. The atomic distortions and strain distributions near the Si/Ge interfaces are predicted for nanowires with their axes oriented along the [111] direction. The cases of 10 and 25 nm diameter Si/Ge biwires and of 25 nm diameter Si/Ge/Si axial heterostructures with the Ge disk 1 nm thick were studied. Substantial distortions in the height of the atoms adjacent to the interface were found for the biwires but not for the Ge disks. Strains as high as 3.5% were found for the Ge disk and values of 2%–2.5% were found at the Si and Ge interfacial layers in the biwires. Deformation potential theory was used to estimate the influence of the strains on the band gap, and reductions in band gap to as small as 40% of bulk values are predicted for the Ge disks. The localized regions of increased strain and resulting energy minima were also found within the Si/Ge biwire interfaces with the larger effects on the Ge side of the interface. The regions of strain maxima near and within the interfaces are anticipated to be useful for tailoring band gaps and producing quantum confinement of carriers. These results suggest that nanowire heterostructures provide greater design flexibility in band structure modification than is possible with planar layer growth.
Resumo:
Elementary conformational changes of the backbone of a 21-residue peptide A5(A3RA)3A are studied using molecular dynamics simulations in explicit water. The processes of the conformational transitions and the regimes of stationary fluctuations between them are investigated using minimal perturbations of the system. The perturbations consist of a few degrees rotation of the velocity of one of the systems' atoms and keep the system on the same energy surface. It is found that (i) the system dynamics is insignificantly changed by the perturbations in the regimes between the transitions; (ii) it is very sensitive to the perturbations just before the transitions that prevents the peptide from making the transitions; and (iii) the perturbation of any atom of the system, including distant water molecules is equally effective in preventing the transition. The latter implies strongly collective dynamics of the peptide and water during the transitions.
Resumo:
The question of significant deviations of protein folding times simulated using molecular dynamics from experimental values is investigated. It is shown that in the framework of Markov State Model (MSM) describing the conformational dynamics of peptides and proteins, the folding time is very sensitive to the simulation model parameters, such as forcefield and temperature. Using two peptides as examples, we show that the deviations in the folding times can reach an order of magnitude for modest variations of the molecular model. We, therefore, conclude that the folding rate values obtained in molecular dynamics simulations have to be treated with care.
Resumo:
To help understand how sugar interactions with proteins stabilise biomolecular structures, we compare the three main hypotheses for the phenomenon with the results of long molecular dynamics simulations on lysozyme in aqueous trehalose solution (0.75 M). We show that the water replacement and water entrapment hypotheses need not be mutually exclusive, because the trehalose molecules assemble in distinctive clusters on the surface of the protein. The flexibility of the protein backbone is reduced under the sugar patches supporting earlier findings that link reduced flexibility of the protein with its higher stability. The results explain the apparent contradiction between different experimental and theoretical results for trehalose effects on proteins.
Resumo:
Epitopes mediated by T cells lie at the heart of the adaptive immune response and form the essential nucleus of anti-tumour peptide or epitope-based vaccines. Antigenic T cell epitopes are mediated by major histocompatibility complex (MHC) molecules, which present them to T cell receptors. Calculating the affinity between a given MHC molecule and an antigenic peptide using experimental approaches is both difficult and time consuming, thus various computational methods have been developed for this purpose. A server has been developed to allow a structural approach to the problem by generating specific MHC:peptide complex structures and providing configuration files to run molecular modelling simulations upon them. A system has been produced which allows the automated construction of MHC:peptide structure files and the corresponding configuration files required to execute a molecular dynamics simulation using NAMD. The system has been made available through a web-based front end and stand-alone scripts. Previous attempts at structural prediction of MHC:peptide affinity have been limited due to the paucity of structures and the computational expense in running large scale molecular dynamics simulations. The MHCsim server (http://igrid-ext.cryst.bbk.ac.uk/MHCsim) allows the user to rapidly generate any desired MHC:peptide complex and will facilitate molecular modelling simulation of MHC complexes on an unprecedented scale.
Resumo:
The amphibian antimicrobial peptide pseudin-2 is a peptide derived from the skin of the South-American frog Pseudis paradoxa (Olson et al., 2001). This peptide possesses tremendous potential as a therapeutic lead since it has been shown to possess both antimicrobial as well insulin-releasing properties (Olson et al., 2001; Abdel-Wahab et al., 2008). This study aimed to develop pseudin-2’s potential by understanding and improving its properties as an antimicrobial agent. The structure-function relationships of pseudin-2 were explored using a combination of in-vitro and in-silico techniques, with an aim to predict how the structure of the peptide may be altered in order to improve its efficacy. A library of pseudin-2 mutants was generated by randomizing codons at positions 10, 14 and 18 of a synthetic gene, using NNK saturation mutagenesis. Analysis of these novel peptides broadly confirmed, in line with literature precedent, that anti-microbial activity increases with increased positive charge. Specifically, 2 positively-charged residues at positions 10 and 14 and a hydrophobic at position 18 are preferred. However, substitution at position 14 with some polar, non-charged residues also created peptides with antimicrobial activity. Interestingly, the pseudin-2 analogue [10-E, 14-Q, 18-L] which is identical to pseudin-2, except that the residues at positions 10 and 14 are switched, showed no anti-microbial activity at all. Molecular dynamics simulations of pseudin-2 showed that the peptide possesses two equilibrium structures in a membrane environment: a linear and a kinked a-helix which both embed into the membrane at an angle. Biophysical characterization using circular dichroism spectroscopy confirmed that the peptide is helical within the membrane environment whilst linear dichroism established that the peptide has no defined orientation within the membrane. Collectively, these data indicate that Pseudin-2 exerts its antimicrobial activity via the carpet model.
Resumo:
The full set of partial structure factors for glassy germania, or GeO2, were accurately measured by using the method of isotopic substitution in neutron diffraction in order to elucidate the nature of the pair correlations for this archetypal strong glass former. The results show that the basic tetrahedral Ge(O-1/2)(4) building blocks share corners with a mean inter-tetrahedral Ge-O-Ge bond angle of 132(2)degrees. The topological and chemical ordering in the resultant network displays two characteristic length scales at distances greater than the nearest neighbour. One of these describes the intermediate range order, and manifests itself by the appearance of a first sharp diffraction peak in the measured diffraction patterns at a scattering vector k(FSDP) approximate to 1.53 angstrom(-1), while the other describes so-called extended range order, and is associated with the principal peak at k(PP) = 2.66( 1) angstrom(-1). We find that there is an interplay between the relative importance of the ordering on these length scales for tetrahedral network forming glasses that is dominated by the extended range ordering with increasing glass fragility. The measured partial structure factors for glassy GeO2 are used to reproduce the total structure factor measured by using high energy x-ray diffraction and the experimental results are also compared to those obtained by using classical and first principles molecular dynamics simulations.