949 resultados para Modèle Markov-modulé


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On cover: AD719413.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (doctoral)--Kaiser-Wilhelms-Universitat Strassburg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent development of the Markov chain Monte Carlo (MCMC) technique is the emergence of MCMC samplers that allow transitions between different models. Such samplers make possible a range of computational tasks involving models, including model selection, model evaluation, model averaging and hypothesis testing. An example of this type of sampler is the reversible jump MCMC sampler, which is a generalization of the Metropolis-Hastings algorithm. Here, we present a new MCMC sampler of this type. The new sampler is a generalization of the Gibbs sampler, but somewhat surprisingly, it also turns out to encompass as particular cases all of the well-known MCMC samplers, including those of Metropolis, Barker, and Hastings. Moreover, the new sampler generalizes the reversible jump MCMC. It therefore appears to be a very general framework for MCMC sampling. This paper describes the new sampler and illustrates its use in three applications in Computational Biology, specifically determination of consensus sequences, phylogenetic inference and delineation of isochores via multiple change-point analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let (Phi(t))(t is an element of R+) be a Harris ergodic continuous-time Markov process on a general state space, with invariant probability measure pi. We investigate the rates of convergence of the transition function P-t(x, (.)) to pi; specifically, we find conditions under which r(t) vertical bar vertical bar P-t (x, (.)) - pi vertical bar vertical bar -> 0 as t -> infinity, for suitable subgeometric rate functions r(t), where vertical bar vertical bar - vertical bar vertical bar denotes the usual total variation norm for a signed measure. We derive sufficient conditions for the convergence to hold, in terms of the existence of suitable points on which the first hitting time moments are bounded. In particular, for stochastically ordered Markov processes, explicit bounds on subgeometric rates of convergence are obtained. These results are illustrated in several examples.