991 resultados para Microscopia especular
Resumo:
The obtaining of ceramic materials from polymeric precursors is subject of numerous studies due to lower energy costs compared to conventional processing. The aim of this study is to investigate and improve the mechanism for obtaining ceramic matrix composite (CMC) based on SiOC/Al2O3/TiC by pyrolysis of polysiloxane in the presence of an active filler and inert filler in the pyrolysis temperature lower than the usually adopted for this technique, with greater strength. It also investigates the influence of pyrolysis temperature, the content of Alas active filler, the presence of infiltrating agents (Al, glass and polymer) after pyrolysis, temperature and infiltration time on some physical and mechanical properties. Alumina is used as inert filler and Al and Ti as active filler in the pyrolysis. Aluminum, glass and polysiloxane are used as agents infiltrating the post-pyrolysis. The results are analyzed with respect to porosity and bulk density by the Archimedes method, the presence of crystalline phases by X-ray diffraction (XRD) and microstructure by scanning electron microscopy (SEM). The ceramic pyrolyzed between 850 °C 1400 °C contain porosity 15% to 33%, density 2.34 g/cm3 and flexural strength at 4 points from 30 to 42 MPa. The microstructure features are porous, with an array of Al2O3 reinforced by TiC particles and AlTi3. The infiltration post-pyrolysis reveals decrease in porosity and increase density and strength. The composites have potential applications where thermal stability is the main requirement
Resumo:
The search for sustainable technologies that can contribute to reduce energy consumption is a great challenge in the field of insulation materials. In this context, composites manufactured from vegetal sources are an alternative technology. The principal objectives of this work are the development and characterization of a composite composed by the rigid polyurethane foam derived from castor oil (commercially available as RESPAN D40) and sisal fibers. The manufacture of the composite was done with expansion controlled inside a closed mold. The sisal fibers where used in the form of needlepunched nonwoven with a mean density of 1150 g/m2 and 1350 g/m2. The composite characterization was performed through the following tests: thermal conductivity, thermal behavior, thermo gravimetric analysis (TG/DTG), mechanical strength in compression and flexural, apparent density, water absorption in percentile, and the samples morphology was analyzed in a MEV. The density and humidity percentage of the sisal fiber were also determined. The thermal conductivity of the composites was higher than the pure polyurethane foam, the addition of nonwoven sisal fibers will become in a higher level of compact foam, reducing empty spaces (cells) of polyurethane, inducing an increase in k value. The apparent density of the composites was higher than pure polyurethane foam. In the results of water absorption tests, was seen a higher absorption percent of the composites, what is related to the presence of sisal fibers which are hygroscopic. From TG/DTG results, with the addition of sisal fibers reduced the strength to thermal degradation of the composites, a higher loss of mass was observed in the temperature band between 200 and 340 °C, related to urethane bonds decomposition and cellulose degradation and its derivatives. About mechanical behavior in compression and flexural, composites presented a better mechanical behavior than the rigid polyurethane foam. An increase in the amount of sisal fibers induces a higher rigidity of the composites. At the thermal behavior tests, the composites were more mechanically and thermally resistant than some materials commonly used for thermal insulation, they present the same or better results. The density of nonwoven sisal fiber had influence over the insulation grade; this means that, an increaser in sisal fiber density helped to retain the heat
Resumo:
The use of polymer based coatings is a promising approach to reduce the corrosion problem in carbon steel pipes used for the transport of oil and gas in the oil industry. However, conventional polymer coatings offer limited properties, which often cannot meet design requirements for this type of application, particularly in regard to use temperature and wear resistance. Polymer nanocomposites are known to exhibit superior properties and, therefore, offer great potential for this type of application. Nevertheless, the degree of enhancement of a particular property is greatly dependent upon the matrix/nanoparticle material system used, the matrix/nanoparticle interfacial bonding and also the state of dispersion of the nanoparticle in the polymer matrix. The objective of the present research is to develop and characterize polymer based nanocomposites to be used as coatings in metallic pipelines for the transportation of oil and natural gas. Epoxy/SiO2 nanocomposites with nanoparticle contents of 2, 4, and 8 wt % were processed using a high-energy mill. Modifications of the SiO2 nanoparticles‟ surfaces with two different silane agents were carried out and their effect on the material properties were investigated. The state of dispersion of the materials processed was studied using Scanning and Transmission Electron Microscopy (SEM and TEM) micrographs. Thermogravimetric analysis (TG) were also conducted to determine the thermal stability of the nanocomposites. In addition, the processed nanocomposites were characterized by dynamic mechanical analysis (DMA) to investigate the effect of nanoparticles content and silane treatment on the viscoelastic properties and on the glass transition temperature. Finally, wear tests of the pin-on-disc type were carried out to determine the effects of the nanoparticles and the silane treatments studied. According to the results, the addition of SiO2 nanoparticles treated with silane increased the thermal stability, the storage modulus and Tg of the epoxy resin and decreased wear rate. This confirms that the interaction between the nanoparticles and the polymer chains plays a critical role on the properties of the nanocomposites
Resumo:
In this study were conducted experimental procedures for determination of variation of the expandability of rigid polyurethane foam (PUR) from a natural oil polyol (NOP), specifically the Castor oil plant, Ricinus communis, pure and additions of the vermiculite in phase dispersed in different percentage within a range from 0% to 20%, mass replacement. From the information acquired, were defined the parameters for production of bodies of test, plates obtained through controlled expansion, with the final volume fixed. Initially, the plates were subjected to thermal performance tests and evaluated the temperature profiles, to later be extracted samples duly prepared in accordance with the conditions required for each test. Was proceeded then the measurement of the coefficient of thermal conductivity, volumetric capacity heat and thermal diffusivity. The findings values were compared with the results obtained in the tests of thermal performance, contributing to validation of the same. Ultimately, it was investigated the influence that changes in physical-chemical structure of the material had exerted on the variation of thermophysical quantities through gas pycnometry, scanning electron microscopy (SEM) combined with energy dispersive X-ray fluorescence spectroscopy (EDXRF), infrared spectroscopy using Fourier transform (FTIR), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Based on the results obtained was possible to demonstrate that all load percentage analyzed promoted an increase in the potential expansion (PE) of the resin. In production of the plates, the composites with density near at the free expansion presented high contraction during the cure, being the of higher density adopted as definitive standard. In the thermal performance tests, the heating and cooling curves of the different composites had presented symmetry and values very close for lines of the temperature. The results obtained for the thermophysical properties of composites, showed little difference in respect of pure foam. The percentage of open pores and irregularities in the morphology of the composites were proportionate to the increment of vermiculite. In the interaction between the matrix and dispersed phase, there were no chemical transformations in the region of interface and new compounds were not generated. The composites of PUR-NOP and vermiculite presented thermal insulating properties near the foam pure and percentage significantly less plastic in its composition, to the formulation with 10% of load
Resumo:
Metal/ceramic interfaces using zirconia have dominated the industrial applications in the last decade, due to the high mechanical strength and fracture toughness of zirconia, especially at temperatures below 300 ºC. Also noteworthy is the good ionic conductivity in high temperatures of this component. In this work joining between ZrO2 Y-TZP and ZrO2 Mg-PSZ with austenitic stainless steel was studied. These joints were brazed at high-vacuum after mechanical metallization with Ti using filler alloys composed by Ag-Cu and Ag-Cu-Ni. The influence of the metallization, and the affinity between the different groups (ceramic / filler alloys) was evaluated, in order to achieve strong metal/ceramic joints. Evaluation of joints and interfaces, also the characterization of base materials was implemented using various techniques, such as: x-ray diffraction, leak test, three-point flexural test and scanning electron microscopy with chemical analysis. The microstructural analysis revealed physical and chemical bonds in the metal/ceramic interfaces, providing superior leak proof joints and stress cracking, in order to a good joint in all brazed samples. Precipitation zones and reaction layers with eutetic characteristics were observed between the steel and the filler metal
Resumo:
The 100% cotton fabric (CO)* treated with plasma of methane CH4 has direct application in all areas that needs of aqueous solutions repellent material like coatings and uniforms applied biomedical, aeronautics, and automobile between others. 100% cotton fabric (CO) samples were treated by plasma with two differents atmosphere: Methane gas (CH4), treatment time was varied in 10 in 10 min. until 60 min., and mixture methane/argon (CH4/Ar), it was varied the proportion 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2 e 9:1, with treatment time of 30 minutes. In both, the fluxe was 5 sccm (second cubic centimeter), pressure 6 mbar, voltage 490 V and current 0,15A. The objective of work was measure the superficial tension of 100% CO then it treated with plasma, using contact angle measures of water and glycerol with the surface. The samples were tested after treatment, with 8 and 12 months to verify the superficial modification effects. It was verified an increase of hydrophobility with the Sessile drop values varied between 116,69º to 137,85º and it carried on after 12 months. The no treated samples shows contact angle equal 0º. OES analysis and Raman spectroscopy were accomplished. In the SEM analysis was verified oligomers. The plasma treatment is correct environmental, It turning greater than conventional treatments
Resumo:
In this work, it is proposed the study of the effect of barium oxide acting as synthetic flow in the behavior of masses for stoneware from the use of raw materials found in the deposits of minerals of the Rio Grande do Norte that it makes use of a great natural potential for the industrialization of the product. The porcelanato is a sophisticated product with excellent final properties being applied as ceramic coating in buildings of high standard of engineering. The raw materials selected for the development of the study had been two types of argilas, two types of feldspatos, dolomita, talco, barium carbonate and silica, being characterized by X-ray fluorescence, X-ray diffraction, granulometric analysis, dilatometric analysis and thermal analysis. Thus, it is intended to define four formulations using the cited raw materials that will be processed, conformed and sintered in the temperatures of 1150 °C, 1175 °C, 1200 °C, 1225 °C e 1250 °C. From the physical characterizations, chemical and morphologic of the formed formulations, the effect of barium oxide is determined in the physical and mechanical properties of the studied system carrying water absorption tests, linear retraction, apparent porosity, apparent specific mass, compacting curve, flexural strength and microstructural analysis by XRD and SEM. After analyzing the results, indicated that barium oxide acts as a flux of high temperature and as the ordering of structure, where the embedded glass phase has the nucleating effect phase potassium silico-aluminum reacting with free silica which together with the high content of potassium concentrated form a new crystalline phase called microcline. The masses studied with the addition of barium oxide present physical-mechanical properties highly satisfactory in reduced firing temperatures, which implies a saving in energy given off in the production and increased productivity
Resumo:
The State Bahia, Brazil, presents different geological sites it with a very expressive variety minerals. It is situated among the very important States which produces minerals for industries, such as pointed aggregate, ornamentals stones and ceramics raw materials. Nowadays only four companies producting ceramics tiles. Porcelainized stoneware tiles is one of the noblest ceramics, depicting low water absorption (typically below of 0,5%), in addition to excellent staining resistance and mechanical strength. The present work aims at investigating the potential of local raw materials for the production of porcelainized stoneware tiles. For this purpose, these materials were characterized by X-ray fluorescence, X-ray diffraction, particle size analysis, thermal gravimetric analysis, thermal differential analysis and dilatometric analysis. Admixtures containing different compositions were prepared and fired at four temperatures, 1100 ºC, 1150 ºC, 1200 ºC and 1250 ºC with isotherm for 60 minute and heathing rate of 5 oC/min. After firing the samples, they were characterized by water absorption tests, linear retraction, analysis, apparent porosity, apparent specific mass, flexural strength, and microstructural analysis by X-ray diffraction and scanning electron microscopy . The results revealed three ceramics with porcelainized stoneware tiles characteristics and porcelain tile will be produce from raw materials originated in the State of Bahia
Resumo:
Low cost seals are made of NBR, Nitrile Butadiene Rubber, a family of unsaturated copolymers that is higher resistant to oils the more content of nitrile have in its composition, although lower its flexibility. In Petroleum Engineering, NBR seal wear can cause fluid leakage and environmental damages, promoting an increasing demand for academic knowledge about polymeric materials candidate to seals submitted to sliding contacts to metal surfaces. This investigation aimed to evaluate tribological responses of a commercial NBR, hardness 73 ± 5 Sh A, polytetrafluoroethylene (PTFE), hardness 60 ± 4 HRE and PTFE with graphite, 68 ± 6 HRE. The testings were performed on a sliding tribometer conceived to explore the tribological performance of stationary polymer plane coupons submitted to rotational cylinder contact surface of steel AISI 52100, 20 ± 1 HRC Hardness, under dry and lubricated (oil SAE 15W40) conditions. After screening testings, the normal load, relative velocity and sliding distance were 3.15 N, 0.8 m/s and 3.2 km, respectively. The temperatures were collected over distances of 3.0±0.5 mm and 750±50 mm far from the contact to evaluate the heating in this referential zone due to contact sliding friction by two thermocouples K type. The polymers were characterized through Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The wear mechanisms of the polymer surfaces were analyzed by Scanning Electron Microscopy (SEM) and EDS (Energy-Dispersive X-ray Spectroscopy). NBR referred to the higher values of heating, suggesting higher sliding friction. PTFE and PTFE with graphite showed lower heating, attributed to the delamination mechanism
Resumo:
Ceramics with porous cellular structure, called ceramic foams, have a potential use in several applications, such as: thermal insulation, catalyst supports, filters, and others. Among these techniques to obtain porous ceramics the replication method is an important process. This method consists of impregnation of a sponge (usually polymer) with ceramic slurry, followed by a heat treatment, which will happen the decomposition of organic material and sintering the ceramic material, resulting in a ceramic structure which is a replica of impregnated sponge. Knowledge of the mechanical properties of these ceramics is important for these materials can be used commercially. Gibson and Ashby developed a mathematical model to describe the mechanical behavior of cellular solids. This model wasn´t for describing the ceramics behavior produced by the replica method, because it doesn´t consider the defects from this type of processing. In this study were researched mechanical behavior of porous alumina ceramics obtained by the replica method and proposed modifications to the model of Gibson and Ashby to accommodate this material. The polymer sponge used in processing was characterized by thermogravimetric analysis and scanning electron microscopy. The materials obtained after sintering were characterized by mechanical strength tests on 4-point bending and compression, density and porosity and by scanning electron microscopy. From these results it was evaluated the mechanical strength behavior compared to Gibson and Ashby model for solid cellular structure and was proposed a correction of this model through a factor related to struts integrity degree, which consider fissures present in the structure of these materials besides defects geometry within the struts
Resumo:
In recent years there has been a significant growth in technologies that modify implant surfaces, reducing healing time and allowing their successful use in areas with low bone density. One of the most widely used techniques is plasma nitration, applied with excellent results in titanium and its alloys, with greater frequency in the manufacture of hip, ankle and shoulder implants. However, its use in dental implants is very limited due to high process temperatures (between 700 C o and 800 C o ), resulting in distortions in these geometrically complex and highly precise components. The aim of the present study is to assess osseointegration and mechanical strength of grade II nitrided titanium samples, through configuration of hollow cathode discharge. Moreover, new formulations are proposed to determine the optimum structural topology of the dental implant under study, in order to perfect its shape, make it efficient, competitive and with high definition. In the nitriding process, the samples were treated at a temperature of 450 C o and pressure of 150 Pa , during 1 hour of treatment. This condition was selected because it obtains the best wettability results in previous studies, where different pressure, temperature and time conditions were systematized. The samples were characterized by X-ray diffraction, scanning electron microscope, roughness, microhardness and wettability. Biomechanical fatigue tests were then conducted. Finally, a formulation using the three dimensional structural topology optimization method was proposed, in conjunction with an hadaptive refinement process. The results showed that plasma nitriding, using the hollow cathode discharge technique, caused changes in the surface texture of test specimens, increases surface roughness, wettability and microhardness when compared to the untreated sample. In the biomechanical fatigue test, the treated implant showed no flaws, after five million cycles, at a maximum fatigue load of 84.46 N. The results of the topological optimization process showed well-defined optimized layouts of the dental implant, with a clear distribution of material and a defined edge
Resumo:
The competitiveness of the trade generated by the higher availability of products with lower quality and cost promoted a new reality of industrial production with small clearances. Track deviations at the production are not discarded, uncertainties can statistically occur. The world consumer and the Brazilian one are supported by the consumer protection code, in lawsuits against the products poor quality. An automobile is composed of various systems and thousands of constituent parts, increasing the likelihood of failure. The dynamic and security systems are critical in relation to the consequences of possible failures. The investigation of the failure gives us the possibility of learning and contributing to various improvements. Our main purpose in this work is to develop a systematic, specific methodology by investigating the root cause of the flaw occurred on an axle end of the front suspension of an automobile, and to perform comparative data analyses between the fractured part and the project information. Our research was based on a flaw generated in an automotive suspension system involved in a mechanical judicial cause, resulting in property and personal damages. In the investigations concerning the analysis of mechanical flaws, knowledge on materials engineering plays a crucial role in the process, since it enables applying techniques for characterizing materials, relating the technical attributes required from a respective part with its structure of manufacturing material, thus providing a greater scientific contribution to the work. The specific methodology developed follows its own flowchart. In the early phase, the data in the records and information on the involved ones were collected. The following laboratory analyses were performed: macrography of the fracture, micrography with SEM (Scanning Electron Microscope) of the initial and final fracture, phase analysis with optical microscopy, Brinell hardness and Vickers microhardness analyses, quantitative and qualitative chemical analysis, by using X-ray fluorescence and optical spectroscopy for carbon analysis, qualitative study on the state of tension was done. Field data were also collected. In the analyses data of the values resulting from the fractured stock parts and the design values were compared. After the investigation, one concluded that: the developed methodology systematized the investigation and enabled crossing data, thus minimizing diagnostic error probability, the morphology of the fracture indicates failure by the fatigue mechanism in a geometrically propitious location, a tension hub, the part was subjected to low tensions by the sectional area of the final fracture, the manufacturing material of the fractured part has low ductility, the component fractured in an earlier moment than the one recommended by the manufacturer, the percentages of C, Si, Mn and Cr of the fractured part present values which differ from the design ones, the hardness value of the superior limit of the fractured part is higher than that of the design, and there is no manufacturing uniformity between stock and fractured part. The work will contribute to optimizing the guidance of the actions in a mechanical engineering judicial expertise
Resumo:
We developed an assay methodology that considered the temperature variation and the scanning electron microscopy as a method to quantify and characterize respectively the consumption evolution in three 46 LA machines, with internal combustion and two-stroke engines, 7.64 cm3 cylinder capacity, 23.0 millimeters diameter and 18.4 millimeters course, RPM service from 2.000 to 16.000 rpm, 1.2 HP power, and 272 grams weight. The investigated engines components were: (1) head of the engine (Al-Si alloy), (2) piston (Al-Si alloy) and (3) piston pin (AISI 52100 steel). The assays were carried out on a desktop; engines 1 and 2 were assayed with no load, whereas in two assays of engine 3 we added a fan with wind speed that varied from 8.10 m/s to 11.92 m/s, in order to identify and compare the engine dynamic behavior as related to the engines assayed with no load. The temperatures of the engine s surface and surroundings were measured by two type K thermopairs connected to the assay device and registered in a microcomputer with data recording and parameters control and monitoring software, throughout the assays. The consumed surface of the components was analyzed by scanning electron microscopy (SEM) and microanalysis-EDS. The study was complemented with shape deformation and mass measurement assays. The temperature variation was associated with the oxides morphology and the consumption mechanisms were discussed based on the relation between the thermal mechanical effects and the responses of the materials characterization
Resumo:
In this work, were produced ceramic matrix composites based in SiCxOy e Al2O3 reinforced with NbC, by hydrosilylation reaction between D4Vi and poly(methylhydrosiloxane) mixtured with Al2O3 as inert filler, Nb and Al as reactive filler. After the mixture and compactation at 80ºC (warm pressing), the samples were pyrolised at 1200 and 1400ºC and infiltred with ICZ and LZSA respectively, and thermically, physical and structurally characterized by X-ray diffraction, density and porosity, flexural mechanical strength and fracture surface by scanning electron microscopy. The yield ceramic obtained after pyrolysis for studied composition at 1200ºC was 95%. The obtained phases had been identified as being Al3Nb, NbSi2 and NbC. The composite material presented apparent porosity varying of 15 up to 32% and mechanical flexural strenght of 32 up to 37,5MPa. After the fracture surface analysis, were observed a phases homogeneous dispersion, with some domains of amorphous and crystalline aspect. The samples that were submitted the infiltration cycle presented a layer next the surface with reduced pores number in relation to the total volume
Resumo:
The aluminothermic reduction consists in an exothermic reaction between a metallic oxide and aluminum to produce the metal and the scum. The extracted melted metal of that reaction usually comes mixed with particles of Al2O3 resulting of the reduction, needing of subsequent refine to eliminate the residual impure as well as to eliminate porosities. Seeking to obtain a product in powder form with nanometric size or even submicrometric, the conventional heat source of the reaction aluminothermic , where a resistor is used (ignitor) as ignition source was substituted, for the plasma, that acts more efficient way in each particle of the sample. In that work it was used as metallic oxide the niobium pentoxide (Nb2O5) for the exothermal reaction Nb2O5 + Al. Amounts stoichiometric, substoichiometric and superestoichiometric of aluminum were used. The Nb2O5 powder was mixed with aluminum powder and milled in planetarium of high energy for a period of 6 hours. Those powders were immerged in plasm that acts in a punctual way in each particle, transfering heat, so that the reaction can be initiate and spread integrally for the whole volume of the particle. The mixture of Nb2O5 + Al was characterized through the particle size analysis by laser and X-ray diffraction (DRX) and the obtained product of reaction was characterized using the electronic microscopy of sweeping (MEV) and the formed phases were analyzed by DRX. Niobium powders with inferior sizes to 1 mm were obtained by that method. It is noticed, through the analysis of the obtained results, that is possible to accomplish the aluminothermic reduction process by plasma ignition with final particles with inferior sizes to the original oxide