924 resultados para Microsatellite
Resumo:
Sex chromosome differentiation in Rana temporaria varies strikingly among populations or families: whereas some males display well-differentiated Y haplotypes at microsatellite markers on linkage group 2 (LG2 ), others are genetically undistinguishable from females. We analysed with RADseq markers one family from a Swiss lowland population with no differentiated sex chromosomes, and where sibship analyses had failed to detect any association between the phenotypic sex of progeny and parental haplotypes. Offspring were reared in a common tank in outdoor conditions and sexed at the froglet stage. We could map a total of 2177 SNPs (1123 in the mother, 1054 in the father), recovering in both adults 13 linkage groups (= chromosome pairs) that were strongly syntenic to Xenopus tropicalis despite > 200 My divergence. Sexes differed strikingly in the localization of crossovers, which were uniformly distributed in the female but limited to chromosome ends in the male. None of the 2177 markers showed significant association with offspring sex. Considering the very high power of our analysis, we conclude that sex determination was not genetic in this family; which factors determined sex remain to be investigated.
Resumo:
BACKGROUND: Many species contain evolutionarily distinct groups that are genetically highly differentiated but morphologically difficult to distinguish (i.e., cryptic species). The presence of cryptic species poses significant challenges for the accurate assessment of biodiversity and, if unrecognized, may lead to erroneous inferences in many fields of biological research and conservation. RESULTS: We tested for cryptic genetic variation within the broadly distributed alpine mayfly Baetis alpinus across several major European drainages in the central Alps. Bayesian clustering and multivariate analyses of nuclear microsatellite loci, combined with phylogenetic analyses of mitochondrial DNA, were used to assess population genetic structure and diversity. We identified two genetically highly differentiated lineages (A and B) that had no obvious differences in regional distribution patterns, and occurred in local sympatry. Furthermore, the two lineages differed in relative abundance, overall levels of genetic diversity as well as patterns of population structure: lineage A was abundant, widely distributed and had a higher level of genetic variation, whereas lineage B was less abundant, more prevalent in spring-fed tributaries than glacier-fed streams and restricted to high elevations. Subsequent morphological analyses revealed that traits previously acknowledged as intraspecific variation of B. alpinus in fact segregated these two lineages. CONCLUSIONS: Taken together, our findings indicate that even common and apparently ecologically well-studied species may consist of reproductively isolated units, with distinct evolutionary histories and likely different ecology and evolutionary potential. These findings emphasize the need to investigate hidden diversity even in well-known species to allow for appropriate assessment of biological diversity and conservation measures.
Resumo:
Genetic diversity is one of the levels of biodiversity that the World Conservation Union (IUCN) has recognized as being important to preserve. This is because genetic diversity is fundamental to the future evolution and to the adaptive flexibility of a species to respond to the inherently dynamic nature of the natural world. Therefore, the key to maintaining biodiversity and healthy ecosystems is to identify, monitor and maintain locally-adapted populations, along with their unique gene pools, upon which future adaptation depends. Thus, conservation genetics deals with the genetic factors that affect extinction risk and the genetic management regimes required to minimize the risk. The conservation of exploited species, such as salmonid fishes, is particularly challenging due to the conflicts between different interest groups. In this thesis, I conduct a series of conservation genetic studies on primarily Finnish populations of two salmonid fish species (European grayling, Thymallus thymallus, and lake-run brown trout, Salmo trutta) which are popular recreational game fishes in Finland. The general aim of these studies was to apply and develop population genetic approaches to assist conservation and sustainable harvest of these populations. The approaches applied included: i) the characterization of population genetic structure at national and local scales; ii) the identification of management units and the prioritization of populations for conservation based on evolutionary forces shaping indigenous gene pools; iii) the detection of population declines and the testing of the assumptions underlying these tests; and iv) the evaluation of the contribution of natural populations to a mixed stock fishery. Based on microsatellite analyses, clear genetic structuring of exploited Finnish grayling and brown trout populations was detected at both national and local scales. Finnish grayling were clustered into three genetically distinct groups, corresponding to northern, Baltic and south-eastern geographic areas of Finland. The genetic differentiation among and within population groups of grayling ranged from moderate to high levels. Such strong genetic structuring combined with low genetic diversity strongly indicates that genetic drift plays a major role in the evolution of grayling populations. Further analyses of European grayling covering the majority of the species’ distribution range indicated a strong global footprint of population decline. Using a coalescent approach the beginning of population reduction was dated back to 1 000-10 000 years ago (ca. 200-2 000 generations). Forward simulations demonstrated that the bottleneck footprints measured using the M ratio can persist within small populations much longer than previously anticipated in the face of low levels of gene flow. In contrast to the M ratio, two alternative methods for genetic bottleneck detection identified recent bottlenecks in six grayling populations that warrant future monitoring. Consistent with the predominant role of random genetic drift, the effective population size (Ne) estimates of all grayling populations were very low with the majority of Ne estimates below 50. Taken together, highly structured local populations, limited gene flow and the small Ne of grayling populations indicates that grayling populations are vulnerable to overexploitation and, hence, monitoring and careful management using the precautionary principles is required not only in Finland but throughout Europe. Population genetic analyses of lake-run brown trout populations in the Inari basin (northernmost Finland) revealed hierarchical population structure where individual populations were clustered into three population groups largely corresponding to different geographic regions of the basin. Similar to my earlier work with European grayling, the genetic differentiation among and within population groups of lake-run brown trout was relatively high. Such strong differentiation indicated that the power to determine the relative contribution of populations in mixed fisheries should be relatively high. Consistent with these expectations, high accuracy and precision in mixed stock analysis (MSA) simulations were observed. Application of MSA to indigenous fish caught in the Inari basin identified altogether twelve populations that contributed significantly to mixed stock fisheries with the Ivalojoki river system being the major contributor (70%) to the total catch. When the contribution of wild trout populations to the fisheries was evaluated regionally, geographically nearby populations were the main contributors to the local catches. MSA also revealed a clear separation between the lower and upper reaches of Ivalojoki river system – in contrast to lower reaches of the Ivalojoki river that contributed considerably to the catch, populations from the upper reaches of the Ivalojoki river system (>140 km from the river mouth) did not contribute significantly to the fishery. This could be related to the available habitat size but also associated with a resident type life history and increased cost of migration. The studies in my thesis highlight the importance of dense sampling and wide population coverage at the scale being studied and also demonstrate the importance of critical evaluation of the underlying assumptions of the population genetic models and methods used. These results have important implications for conservation and sustainable fisheries management of Finnish populations of European grayling and brown trout in the Inari basin.
Resumo:
Rhizoctonia solani isolates obtained from common beans (Phaseolus vulgaris) grown in the mountainous Atlantic Rainforest (Mata Atlântica) region of São Paulo, Brazil, were analyzed to determine their genetic diversity using internal transcribed spacer (ITS), microsatellite and telomere sequence-based PCR primers. Restriction digestion of the ITS1/5.8S/ITS2 ribosomal regions yielded unique banding patterns specific for AG4 and its subgroups. The ITS restriction digestion (ITS/RFLP), telomere and microsatellite primers identified five to 11 genotypes within the isolates of R. solani. While all isolates were pathogenic on beans, there was no correlation found between genotypic differences and pathogenicity. The different PCR primers revealed a number of isolates that were genetically similar. Some of these genetic groups were supported by more than one of the primers utilized in this study, thus confirming their relationship.
Resumo:
The loss of large areas of Cerrado (Brazilian savanna) in Brazil can lead to reduced biodiversity and to the extinction of species. Therefore, the present study aimed to investigate the genetic fragility of populations of Copaifera langsdorffii Desf exposed to different anthropic conditions in fragments of Cerrado in the state of São Paulo. The study was carried out in two Experimental Stations operated by the Forest Institute (Assis and Itirapina), in one fully protected conservation unit (Pedregulho) and in one private property (Brotas). Analyses were conducted using leaf samples from 353 adult specimens and eight pairs of microsatellite loci. The number of alleles per locus ranged from 13 to 15 in all populations, but the mean number of effective alleles was approximately half this value (7.2 to 9-1). Observed heterozygosity was significant and lower than the expected in all populations. Consequently, all populations deviated from Hardy-Weinberg expected frequencies. Fixation indexes were significant for all populations, with the Pedregulho population having the lowest value (0.189) and Itirapina having the highest (0.283). The analysis of spatial genetic structure detected family structures at distance classes of 20 to 65 m in the populations studied. No clones were detected in the populations. Estimates of effective population size were low, but the area occupied by each population studied was large enough for conservation, medium and long term. Recent reductions or bottlenecks were detected in all four populations. Mean Gst’ (genetic divergence) indicated that most of the variation was within populations. Cluster structure analysis based on the genotypes detected K= 4 clusters with distinct allele frequencies patterns. The genetic differentiation observed among populations is consistent with the hypothesis of genetic and geographic isolation. Therefore, it is essential to adopt conservation strategies that raise the gene flow between fragments.
Resumo:
This study analyzed the reproductive system and the pollen dispersion pattern of Qualea grandiflora progenies. This is a typical species from the Brazilian Cerrado about which there are not too many studies from the genetics point of view. The study was conducted in an area of 2.2 hectares located in the Conservation Unit managed by the Forest Institute of the state of São Paulo, Brazil (Assis State Forest). Total genomic DNA of 300 seeds from 25 plants (12 seeds from each plant) was extracted and amplified using specific primers to obtain microsatellite markers. Results showed that selfing is frequent among adults and progenies, and the species reproduces by outcrossing between related and unrelated individuals (0.913). The single-locus outcrossing rate was 0.632, which indicates that mating between unrelated individuals is more frequent than between related plants. The selfing rate was low (0.087), that is, the species is allogamous and self-fertilization is reduced. About 35% of the plants in the progenies were full-sibs, and about 57%, half-sibs. Besides, about 8% of the progenies were selfing siblings. The genetic differentiation coefficient within progenies was 0.139, whereas the fixation rate was about 27%. The estimate of the effective size revealed that the genetic representativeness of descent was lower than expected in random mating progenies: The analyzed samples corresponded to only 13.2 individuals of an ideal panmictic population. In environmental recovery programs, seeds, preferably from different fruits, should be collected from 95 trees to preserve the genetic diversity of the species.
Resumo:
One of the main goals in current evolutionary biology research is to identify genes behind adaptive phenotypic variations. The advances in genomic technologies have made it possible to identify genetic loci behind these variations, also concerning non-model species. This thesis investigates the genetics of the behaviour and other adaptive traits of the nine-spined stickleback (Pungitius pungitius) through the application of different genetic approaches. Fennoscandian nine-spined stickleback populations express large phenotypical differences especially in behaviour, life –history traits and morphology. However the underlying genetic bases for these phenotypical differences have not been studied in detail. The results of the project will lay the foundation for further genetics studies and provide valuable information for our understanding of the genetics of the adaptive divergence of the nine-spined stickleback. A candidate gene approach was used to develop microsatellite markers situating close to candidate genes for behaviour in the nine-spined stickleback. Altogether 13 markers were developed and these markers were used in the subsequent studies with the anonymous random markers and physiologically important gene markers which are already currently available for nine-spined sticklebacks. It was shown that heterozygosity correlated with behaviour in one of the marine nine-spined stickleback populations but with contrasting effects: correlations with behaviour were negative when using physiological gene markers and positive with random markers. No correlation was found between behavioural markers and behaviour. From the physiological gene markers, a strong correlation was found between osmoregulation-related gene markers and behaviour. These results indicate that both local (physiological) and general (random) effects are important in the shaping of behaviour and that heterozygosity– behaviour correlations are population dependent. In this thesis a second linkage map for nine-spined sticklebacks was constructed. Compared to the earlier nine-spined stickleback linkage map, genomic rearrangements were observed between autosomal (LG7) and sex-determing (LG12) linkage groups. This newly constructed map was used in QTL mapping studies in order to locate genomic regions associated with pelvic structures, behaviour and body size/growth. One major QTL was found for pelvic structures and Pitx1 gene was related to these traits as was predicted from three-spined stickleback studies, but this was in contrast to earlier nine-spined stickleback study. The QTL studies also revealed that behaviour and body size/growth were genetically more complex by having more QTL than pelvic traits. However, in many cases, pelvic structure, body size/growth and behaviour were linked to similar map locations indicating possible pleiotropic effects of genes locating in these QTL regions. Many of the gene related markers resided in the QTL area. In the future, studying these possible candidate genes in depth might reveal the underlying mechanism behind the measured traits.
Resumo:
The aims of this study were to investigate the mating system of a fragmented population of the dioecious tropical tree Myracrodruon urundeuva Allemão, using five microsatellite loci and the mixed mating and correlated mating models. The study was conducted in the Estação Ecológica de Paulo de Farias (436 ha), where the population occupies about 142 ha. The mating system was estimated using 514 open-pollinated offspring, collected from 30 seed-trees. Estimates of the multilocus outcrossing rate confirm that the species is dioecious (t m = 1.0). Low levels of mating among relatives were detected in the population (1 - t s = 0.020). The estimate of paternity correlation (r p(m)) indicated that offsprings were composed of mixtures of half-sibs and full-sibs, with the latter occurring at a low frequency (average of 0.148). The estimated coancestry coefficient within families (Θ = 0.147) was larger and the effective population size (Ne(v)) was lower (Ne(v) = 2.98) than expected in progenies from panmictic populations (Θ = 0.125, Ne(v) = 4, respectively). In terms of conservation, the results indicate that to retain an effective population size of 150, is necessary to collect seeds from at least 50 seed-trees.
Resumo:
Two different pathogenetic mechanisms are proposed for colorectal cancers. One, the so-called "classic pathway", is the most common and depends on multiple additive mutational events (germline and/or somatic) in tumor suppressor genes and oncogenes, frequently involving chromosomal deletions in key genomic regions. Methodologically this pathway is recognizable by the phenomenon of loss of heterozygosity. On the other hand, the "mutator pathway" depends on early mutational loss of the mismatch repair system (germline and/or somatic) leading to accelerated accumulation of gene mutations in critical target genes and progression to malignancy. Methodologically this second pathway is recognizable by the phenomenon of microsatellite instability. The distinction between these pathways seems to be more than academic since there is evidence that the tumors emerging from the mutator pathway have a better prognosis. We report here a very simple methodology based on a set of tri-, tetra- and pentanucleotide repeat microsatellites allowing the simultaneous study of microsatellite instability and loss of heterozygosity which could allocate 70% of the colorectal tumors to the classic or the mutator pathway. The ease of execution of the methodology makes it suitable for routine clinical typing
Resumo:
The Thr(118)Met substitution in the peripheral myelin protein 22 (PMP22) gene has been detected in a number of families with demyelinating Charcot-Marie-Tooth (CMT1) neuropathy or with the hereditary neuropathy with liability to pressure palsy, but in none of them has it consistently segregated with the peripheral neuropathy. We describe here a CMT1 family (a 63-year-old man, his brother and his niece) in which two mutations on different chromosomes were found in the PMP22 gene, the 17p duplication, detected by fluorescent semiquantitative polymerase chain reaction (PCR) of microsatellite markers localized within the duplicated region on chromosome 17p11.2-p12, and the Thr(118)Met substitution, detected by direct sequencing the four coding exons of the PMP22 gene. A genotype/phenotype correlation study showed that the neuropathy segregates with the duplication and that the amino acid substitution does not seem to modify the clinical characteristics or the severity of the peripheral neuropathy. We did not find any evidence to characterize this substitution as a polymorphism in the population studied and we propose that the high frequency reported for this point mutation in the literature suggests that the Thr(118)Met substitution may be a hotspot for mutations in the PMP22 gene.
Resumo:
The spinal muscular atrophies (SMA) or hereditary motor neuronopathies result from the continuous degeneration and death of spinal cord lower motor neurons, leading to progressive muscular weakness and atrophy. We describe a large Brazilian family exhibiting an extremely rare, late-onset, dominant, proximal, and progressive SMA accompanied by very unusual manifestations, such as an abnormal sweating pattern, and gastrointestinal and sexual dysfunctions, suggesting concomitant involvement of the autonomic nervous system. We propose a new disease category for this disorder, `hereditary motor and autonomic neuronopathy', and attribute the term, `survival of motor and autonomic neurons 1' (SMAN1) to the respective locus that was mapped to a 14.5 cM region on chromosome 20q13.2-13.3 by genetic linkage analysis and haplotype studies using microsatellite polymorphic markers. This locus lies between markers D20S120 and D20S173 showing a maximum LOD score of 4.6 at D20S171, defining a region with 33 known genes, including several potential candidates. Identifying the SMAN1 gene should not only improve our understanding of the molecular mechanisms underlying lower motor neuron diseases but also help to clarify the relationship between motor and autonomic neurons.
Resumo:
Deletions on chromosomes 5 and 7 are frequently seen in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). It is assumed that these deletions indicate loss of tumor suppressor genes on these chromosomes and until these tumor suppressor genes are identified, the functional consequences of these deletions and the molecular basis of these myeloid disorders cannot be completely understood. We evaluated loss of heterozygosity (LOH) in 44 patients (18 MDS and 26 AML, diagnosed according to WHO classification criteria) at diagnosis, using a four-microsatellite marker panel: an intragenic marker on the 7th intron of gene IRF-1 of the 5q31.1 region and three markers located inside the 7q31.1 region and correlated the LOH with karyotype abnormalities. The microsatellites chosen corresponded to chromosome regions frequently deleted in MDS/AML. The samples with Q (peak area) less than or equal to 0.50 were indicative of LOH. The percent of informative samples (i.e., heterozygous) for the intragenic microsatellite in gene IRF-1 and in loci D7S486, D7S515 and D7S522 were 66.6, 73.7, 75.5, and 48.8%, respectively. Cytogenetic abnormalities by G-banding were found in 36% (16/44) of the patients (2 of 18 MDS and 14 of 26 AML patients). We found a significantly positive association of the occurrence of LOH with abnormal karyotype (P < 0.05; chi-square test) and there were cases with LOH but the karyotype was normal (by G-banding). These data indicate that LOH in different microsatellite markers is possibly an event previous to chromosomal abnormalities in these myeloid neoplasias.
Resumo:
Monosomy 1p36 is the most common subtelomeric microdeletion syndrome with an incidence rate estimated to be 1 in 5000 births. A hypothesis of a similarity between patients with 1p36 deletion and those with Prader-Willi syndrome and the existence of two different phenotypes for 1p36 microdeletion has been suggested. The main objective of the present study was to determine the existence of 1p36 microdeletion in a sample of patients with mental retardation, obesity and hyperphagia who tested negative by the methylation test for Prader-Willi syndrome. Sixteen patients (7 females, 9 males), 16-26 years old, were evaluated with high-resolution cytogenetic analysis at 550-850 band levels and with 11 polymorphic microsatellite markers located in the 1p36 region. All patients had normal cytogenetic and molecular results. The results obtained by high-resolution cytogenetic methodology were confirmed by the molecular analyses. We did not detect a 1p36 microdeletion in 16 subjects with the Prader-Willi-like phenotype, which reinforces that no correlation seems to exist between Prader-Willi-like phenotype and the 1p36 microdeletion syndrome.
Resumo:
Marfan syndrome (MFS) is an autosomal dominant disease of the connective tissue that affects the ocular, skeletal and cardiovascular systems, with a wide clinical variability. Although mutations in the FBN1 gene have been recognized as the cause of the disease, more recently other loci have been associated with MFS, indicating the genetic heterogeneity of this disease. We addressed the issue of genetic heterogeneity in MFS by performing linkage analysis of the FBN1 and TGFBR2 genes in 34 families (345 subjects) who met the clinical diagnostic criteria for the disease according to Ghent. Using a total of six microsatellite markers, we found that linkage with the FBN1 gene was observed or not excluded in 70.6% (24/34) of the families, and in 1 family the MFS phenotype segregated with the TGFBR2 gene. Moreover, in 4 families linkage with the FBN1 and TGFBR2 genes was excluded, and no mutations were identified in the coding region of TGFBR1, indicating the existence of other genes involved in MFS. Our results suggest that the genetic heterogeneity of MFS may be greater that previously reported.
Resumo:
Affiliation: Faculté de médicine, Université de Montréal