665 resultados para Mesoscale


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene, due to its exceptional properties, is a promising material for nanotechnology applications. In this context, the ability to tune the properties of graphene-based materials and devices with the incorporation of defects and impurities can be of extraordinary importance. Here we investigate the effect of uniaxial tensile strain on the electronic and magnetic properties of graphene doped with substitutional Ni impurities (Ni_sub). We have found that, although Ni_sub defects are non-magnetic in the relaxed layer, uniaxial strain induces a spin moment in the system. The spin moment increases with the applied strain up to values of 0.3-0.4 \mu_B per Ni_sub, until a critical strain of ~6.5% is reached. At this point, a sharp transition to a high-spin state (~1.9 \mu_B) is observed. This magnetoelastic effect could be utilized to design strain-tunable spin devices based on Ni-doped graphene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface flow types (SFT) are advocated as ecologically relevant hydraulic units, often mapped visually from the bankside to characterise rapidly the physical habitat of rivers. SFT mapping is simple, non-invasive and cost-efficient. However, it is also qualitative, subjective and plagued by difficulties in recording accurately the spatial extent of SFT units. Quantitative validation of the underlying physical habitat parameters is often lacking, and does not consistently differentiate between SFTs. Here, we investigate explicitly the accuracy, reliability and statistical separability of traditionally mapped SFTs as indicators of physical habitat, using independent, hydraulic and topographic data collected during three surveys of a c. 50m reach of the River Arrow, Warwickshire, England. We also explore the potential of a novel remote sensing approach, comprising a small unmanned aerial system (sUAS) and Structure-from-Motion photogrammetry (SfM), as an alternative method of physical habitat characterisation. Our key findings indicate that SFT mapping accuracy is highly variable, with overall mapping accuracy not exceeding 74%. Results from analysis of similarity (ANOSIM) tests found that strong differences did not exist between all SFT pairs. This leads us to question the suitability of SFTs for characterising physical habitat for river science and management applications. In contrast, the sUAS-SfM approach provided high resolution, spatially continuous, spatially explicit, quantitative measurements of water depth and point cloud roughness at the microscale (spatial scales ≤1m). Such data are acquired rapidly, inexpensively, and provide new opportunities for examining the heterogeneity of physical habitat over a range of spatial and temporal scales. Whilst continued refinement of the sUAS-SfM approach is required, we propose that this method offers an opportunity to move away from broad, mesoscale classifications of physical habitat (spatial scales 10-100m), and towards continuous, quantitative measurements of the continuum of hydraulic and geomorphic conditions which actually exists at the microscale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ten GPS-Met stations were installed in northwest Mexico from June - September 2013. Each station included a Trimble NetR9 GPS receiver for PWV and a Vaisala WXT520 surface meteorological package measuring wind speed and direction, air temperature, humidity, pressure and precipitation. The geographic location, elevation and data period for each station are provided in Serra et al. (2016). The GPS receiver at Rayon failed on July 16, 21 days after installation, thus these data are not included in the archive but are available upon request (yserra@uw.edu). Data include 1-min surface meteorological variables, while the GPS PWV is calculated at 5-min intervals. A full description of the experiment can be found in Serra et al., 2016: Bull. Am. Meteor. Soc., doi: 10.1175/BAMS-D-14-00250.1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A região sul do Rio Grande do Sul está em localização favorável à formação de tipos de brisa bem caracterizados devido a sua proximidade com os sistemas lacustres e também o Oceano Atlântico. A diferença de vegetação e as temperaturas da superfície do mar, da laguna e do solo, são os principais impulsionadores das circulações locais. Uma das formas de analisar estas circulações locais é através de modelos que simulam a formação da brisa. Desta forma utilizou-se o modelo de mesoescala Weather Research and Forecasting para caracterizar as circulações locais na região sul do Brasil devido às influências do Oceano Atlântico e das lagoas presentes na região: Lagoa dos Patos, Lagoa Mangueira e Lagoa Mirim. Ao todo foram realizadas três simulações: uma para a validação do modelo e duas para simulação das brisas. O modelo apresentou correlações entre 0,7 e 0,9 para a temperatura do ar a dois metros e para a pressão atmosférica. As correlações para a umidade específica e para o vento a dez metros ficaram entre 0,3 e 0,8. Na simulação básica, a brisa lacustre apresentou intensidade máxima às 15 UTC (12 HL) sobre a Lagoa dos Patos e Mangueira e às 18 UTC (15 HL) sobre a Lagoa Mirim. Nos horários entre 0 UTC (21HL) e 9 UTC (6 HL), período em que a brisa terrestre está atuante, observou-se a rotação do vento no sentido anti-horário e também diminuição de intensidade. Para a simulação idealizada onde foi suprimido o efeito sinótico, a brisa marítima no início de sua formação sofreu um bloqueio pela brisa lacustre no horário das 15 UTC (12 HL). Esta oclusão permanece até às 18 UTC (15 HL). Após este período a brisa lacustre diminui a intensidade e dá lugar a brisa marítima que possui direção leste com intensidade menor do que a que foi observada na simulação básica. A brisa terrestre teve início às 0 UTC (21 HL) e seu valor máximo foi de 4 m/s as 9 UTC (6 HL). Para a validação do modelo concluiu-se que o mesmo é adequado para a avaliação das circulações locais. A brisa terrestre caracterizou-se melhor sem a presença do vento sinótico. As brisas Lacustres das Lagoas Mirins e dos Patos possuem influência maior do que a brisa gerada pela Lagoa Mangueira e em determinados períodos opõem-se ao avanço da brisa marítima. A associação do vento sinótico a brisa marítima intensifica a velocidade dos ventos, que por sua vez sobrepõem-se a brisa lacustre no final da tarde. A brisa terrestre formada durante a noite não é forte o suficiente para sobrepor o vento sinótico, mas reduz sua intensidade e altera sua direção.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the formative agents of cloud droplets, aerosols play an undeniably important role in the development of clouds and precipitation. Few meteorological models have been developed or adapted to simulate aerosols and their contribution to cloud and precipitation processes. The Weather Research and Forecasting model (WRF) has recently been coupled with an atmospheric chemistry suite and is jointly referred to as WRF-Chem, allowing atmospheric chemistry and meteorology to influence each other’s evolution within a mesoscale modeling framework. Provided that the model physics are robust, this framework allows the feedbacks between aerosol chemistry, cloud physics, and dynamics to be investigated. This study focuses on the effects of aerosols on meteorology, specifically, the interaction of aerosol chemical species with microphysical processes represented within the framework of the WRF-Chem. Aerosols are represented by eight size bins using the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) sectional parameterization, which is linked to the Purdue Lin bulk microphysics scheme. The aim of this study is to examine the sensitivity of deep convective precipitation modeled by the 2D WRF-Chem to varying aerosol number concentration and aerosol type. A systematic study has been performed regarding the effects of aerosols on parameters such as total precipitation, updraft/downdraft speed, distribution of hydrometeor species, and organizational features, within idealized maritime and continental thermodynamic environments. Initial results were obtained using WRFv3.0.1, and a second series of tests were run using WRFv3.2 after several changes to the activation, autoconversion, and Lin et al. microphysics schemes added by the WRF community, as well as the implementation of prescribed vertical levels by the author. The results of WRFv3.2 runs contrasted starkly with WRFv3.0.1 runs. The WRFv3.0.1 runs produced a propagating system resembling a developing squall line, whereas the WRFv3.2 runs did not. The response of total precipitation, updraft/downdraft speeds, and system organization to increasing aerosol concentrations were opposite between runs with different versions of WRF. Results of the WRFv3.2 runs, however, were in better agreement in timing and magnitude of vertical velocity and hydrometeor content with a WRFv3.0.1 run using single-moment Lin et al. microphysics, than WRFv3.0.1 runs with chemistry. One result consistent throughout all simulations was an inhibition in warm-rain processes due to enhanced aerosol concentrations, which resulted in a delay of precipitation onset that ranged from 2-3 minutes in WRFv3.2 runs, and up to 15 minutes in WRFv.3.0.1 runs. This result was not observed in a previous study by Ntelekos et al. (2009) using the WRF-Chem, perhaps due to their use of coarser horizontal and vertical resolution within their experiment. The changes to microphysical processes such as activation and autoconversion from WRFv3.0.1 to WRFv3.2, along with changes in the packing of vertical levels, had more impact than the varying aerosol concentrations even though the range of aerosol tested was greater than that observed in field studies. In order to take full advantage of the input of aerosols now offered by the chemistry module in WRF, the author recommends that a fully double-moment microphysics scheme be linked, rather than the limited double-moment Lin et al. scheme that currently exists. With this modification, the WRF-Chem will be a powerful tool for studying aerosol-cloud interactions and allow comparison of results with other studies using more modern and complex microphysical parameterizations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current dynamics in the Strait of Bonifacio (south Corsica) were investigated at a small scale during the STELLAMARE1 multidisciplinary cruise in summer 2012, using in situ measurements and modeling data. The Strait of Bonifacio is a particularly sensitive marine area in which specific conservation measures have been taken to preserve the natural environment and wild species. Good knowledge of the hydrodynamics in this area is essential to optimize the Marine Protected Area's management rules. Therefore, we used a high-resolution model (400 m) based on the MARS3D code to investigate the main flux exchanges and to formulate certain hypotheses about the formation of possible eddy structures. The aim of the present paper is first to synthetize the results obtained by combining Acoustic Doppler Current Profiler data, hydrological parameters, Lagrangian drifter data, and satellite observations such as MODIS OC5 chlorophyll a data or Metop-A AVHRR Sea Surface Temperature (SST) data. These elements are then used to validate the presence of the mesoscale eddies simulated by the model and their recurrence outside the cruise period. To complete the analysis, the response of the 3D hydrodynamical model was evaluated under two opposing wind systems and certain biases were detected. Strong velocities up to 1 m s(-1) were recorded in the east part due to the Venturi effect; a complementary system of vortices governed by Coriolis effect and west wind was observed in the west part, and horizontal stratification in the central part has been identified under typical wind condition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sea state can influence the turbulent air–sea exchanges, especially the momentum flux, by modifying the sea-surface roughness. The high-resolution non-hydrostatic convection-permitting model MESO-NH is used here to investigate the impact of a more realistic representation of the waves on heavy precipitation during the Intense Observation Period (IOP) 16a of the first HyMeX Special Observation Period (SOP1). Several quasi-stationary mesoscale convective systems developed over the western Mediterranean region, two of them over the sea, and resulted in heavy precipitation on the French and Italian coasts on 26 October 2012. Three different bulk parametrizations are tested in this study: a reference case (NOWAV) without any wave effect, a parametrization taking into account theoretical wave effects (WAV) and a last one with realistic wave characteristics from the MFWAM analyses (WAM). Using a realistic wave representation in WAM significantly increases the roughness length and the friction velocity with respect to NOWAV and WAV. The three MESO-NH sensitivity experiments of the IOP16a show that this surface-roughness increase in WAM generates higher momentum fluxes and directly impacts the low-level dynamics of the atmosphere, with a slowdown of the 10 m wind, when and where the wind speed exceeds 10 m s−1 and the sea state differs from the idealized one. The turbulent heat fluxes are not significantly influenced by the waves, these fluxes being controlled by the moisture content rather than by the wind speed in the simulations. Although the convective activity is globally well reproduced by all the simulations, the difference in the low-level dynamics of the atmosphere influences the localization of the simulated heavy precipitation. Objective evaluation of the daily rainfall amount and of the 10 m wind speed against the observations confirms the positive impact of the realistic wave representation on this simulation of heavy precipitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation presents work done in the design, modeling, and fabrication of magnetically actuated microrobot legs. Novel fabrication processes for manufacturing multi-material compliant mechanisms have been used to fabricate effective legged robots at both the meso and micro scales, where the meso scale refers to the transition between macro and micro scales. This work discusses the development of a novel mesoscale manufacturing process, Laser Cut Elastomer Refill (LaCER), for prototyping millimeter-scale multi-material compliant mechanisms with elastomer hinges. Additionally discussed is an extension of previous work on the development of a microscale manufacturing process for fabricating micrometer-sale multi-material compliant mechanisms with elastomer hinges, with the added contribution of a method for incorporating magnetic materials for mechanism actuation using externally applied fields. As both of the fabrication processes outlined make significant use of highly compliant elastomer hinges, a fast, accurate modeling method for these hinges was desired for mechanism characterization and design. An analytical model was developed for this purpose, making use of the pseudo rigid-body (PRB) model and extending its utility to hinges with significant stretch component, such as those fabricated from elastomer materials. This model includes 3 springs with stiffnesses relating to material stiffness and hinge geometry, with additional correction factors for aspects particular to common multi-material hinge geometry. This model has been verified against a finite element analysis model (FEA), which in turn was matched to experimental data on mesoscale hinges manufactured using LaCER. These modeling methods have additionally been verified against experimental data from microscale hinges manufactured using the Si/elastomer/magnetics MEMS process. The development of several mechanisms is also discussed: including a mesoscale LaCER-fabricated hexapedal millirobot capable of walking at 2.4 body lengths per second; prototyped mesoscale LaCER-fabricated underactuated legs with asymmetrical features for improved performance; 1 centimeter cubed LaCER-fabricated magnetically-actuated hexapods which use the best-performing underactuated leg design to locomote at up to 10.6 body lengths per second; five microfabricated magnetically actuated single-hinge mechanisms; a 14-hinge, 11-link microfabricated gripper mechanism; a microfabricated robot leg mechansim demonstrated clearing a step height of 100 micrometers; and a 4 mm x 4 mm x 5 mm, 25 mg microfabricated magnetically-actuated hexapod, demonstrated walking at up to 2.25 body lengths per second.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Utilizing the framework of effective surface quasi-geostrophic (eSQG) theory, we explored the potential of reconstructing the 3D upper ocean circulation structures, including the balanced vertical velocity (w) field, from high-resolution sea surface height (SSH) data of the planned SWOT satellite mission. Specifically, we utilized the 1/30°, submesoscale-resolving, OFES model output and subjected it through the SWOT simulator that generates the along-swath SSH data with expected measurement errors. Focusing on the Kuroshio Extension region in the North Pacific where regional Rossby numbers range from 0.22 to 0.32, we found that the eSQG dynamics constitutes an effective framework for reconstructing the 3D upper ocean circulation field. Using the modeled SSH data as input, the eSQG-reconstructed relative vorticity (ζ) and w fields are found to reach a correlation of 0.7–0.9 and 0.6–0.7, respectively, in the 1,000m upper ocean when compared to the original model output. Degradation due to the SWOT sampling and measurement errors in the input SSH data for the ζ and w reconstructions is found to be moderate, 5–25% for the 3D ζ field and 15-35% for the 3D w field. There exists a tendency for this degradation ratio to decrease in regions where the regional eddy variability (or Rossby number) increases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A radar scatterometer operates by transmitting a pulse of microwave energy toward the ocean's surface and measuring the normalized (per-unit-surface) radar backscatter coefficient (σ°). The primary application of scatterometry is the measurement of near-surface ocean winds. By combining σ° measurements from different azimuth angles, the 10 m vector wind can be determined through a Geophysical Model Function (GMF), which relates wind and backscatter. This paper proposes a mission concept for the measurement of both oceanic winds and surface currents, which makes full use of earlier C-band radar remote sensing experience. For the determination of ocean currents, in particular, the novel idea of using two chirps of opposite slope is introduced. The fundamental processing steps required to retrieve surface currents are given together with their associated accuracies. A detailed description of the mission proposal and comparisons between real and retrieved surface currents are presented. The proposed ocean Doppler scatterometer can be used to generate global surface ocean current maps with accuracies better than 0.2 m/s at a spatial resolution better than 25 km (i.e., 12.5 km spatial sampling) on a daily basis. These maps will allow gaining some insights on the upper ocean mesoscale dynamics. The work lies at a frontier, given that the present inability to measure ocean currents from space in a consistent and synoptic manner represents one of the greatest weaknesses in ocean remote sensing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O presente estudo analisa a associação entre partículas inaláveis (PM10) à superfície e determinadas situações meteorológicas, com base em dados (1999-2003) de concentração de partículas finas e grosseiras de estações de qualidade do ar da região de Lisboa e observações meteorológicas. Associaram-se os episódios de poluição a situações sinópticas, com base em cartas de superfície do modelo do Centro Europeu de previsão a médio prazo (ECMWF). Os episódios que ocorrem com maior frequência no Inverno estão associados a um anticiclone. Depressões de origem térmica e vales que se estendem do Norte de África ocorrem poucas vezes, mas a probabilidade de se verificar um episódio com essas situações é elevada. Para cinco destes episódios analisaram-se campos do modelo ECMWF (escala sinóptica) e do modelo ALADIN (mesoscala). As elevadas concentrações de partículas associadas aos episódios estudados resultaram de uma forte influência do nível850 hPa, corroborados pelo modelo de retro-trajectórias do KNMI. ABSTRACT; The present study analyses the relationship between particles (PM10) and specific meteorological patterns based on fine and coarse particles concentration data (1999 to 2003) from the Lisbon area air quality network and meteorological observations. Associations were established between PM10 events and synoptic patterns based on surface fields from European Centre for Medium-Range Weather Forecast (ECMWF) Model. Winter events occur mainly under high pressure conditions. Thermal lows and troughs over North Africa affecting the lberian Península occur less frequently; however, the probability of a PM event with this synoptic pattern is high. Meteorological fields from the ECMWF model (synoptic scale) and the ALADIN model (mesoscale) were analyzed for five of these episodes. The 850 hPa level is quite relevant for determining high PM10 concentrations at the surface, as confirmed by KNMI trajectory model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Theoretical and Experimental Tomography in the Sea Experiment (THETIS 1) took place in the Gulf of Lion to observe the evolution of the temperature field and the process of deep convection during the 1991-1992 winter. The temperature measurements consist, of moored sensors, conductivity-temperature-depth and expendable bathythermograph surveys, ana acoustic tomography. Because of this diverse data set and since the field evolves rather fast, the analysis uses a unified framework, based on estimation theory and implementing a Kalman filter. The resolution and the errors associated with the model are systematically estimated. Temperature is a good tracer of water masses. The time-evolving three-dimensional view of the field resulting from the analysis shows the details of the three classical convection phases: preconditioning, vigourous convection, and relaxation. In all phases, there is strong spatial nonuniformity, with mesoscale activity, short timescales, and sporadic evidence of advective events (surface capping, intrusions of Levantine Intermediate Water (LIW)). Deep convection, reaching 1500 m, was observed in late February; by late April the field had not yet returned to its initial conditions (strong deficit of LIW). Comparison with available atmospheric flux data shows that advection acts to delay the occurence of convection and confirms the essential role of buoyancy fluxes. For this winter, the deep. mixing results in an injection of anomalously warm water (Delta T similar or equal to 0.03 degrees) to a depth of 1500 m, compatible with the deep warming previously reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A parameterization of mesoscale eddy fluxes in the ocean should be consistent with the fact that the ocean interior is nearly adiabatic. Gent and McWilliams have described a framework in which this can be approximated in L-coordinate primitive equation models by incorporating the effects of eddies on the buoyancy field through an eddy-induced velocity. It is also natural to base a parameterization on the simple picture of the mixing of potential vorticity in the interior and the mixing of buoyancy at the surface. The authors discuss the various constraints imposed by these two requirements and attempt to clarify the appropriate boundary conditions on the eddy-induced velocities at the surface. Quasigeostrophic theory is used as a guide to the simplest way of satisfying these constraints.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For derived flood frequency analysis based on hydrological modelling long continuous precipitation time series with high temporal resolution are needed. Often, the observation network with recording rainfall gauges is poor, especially regarding the limited length of the available rainfall time series. Stochastic precipitation synthesis is a good alternative either to extend or to regionalise rainfall series to provide adequate input for long-term rainfall-runoff modelling with subsequent estimation of design floods. Here, a new two step procedure for stochastic synthesis of continuous hourly space-time rainfall is proposed and tested for the extension of short observed precipitation time series. First, a single-site alternating renewal model is presented to simulate independent hourly precipitation time series for several locations. The alternating renewal model describes wet spell durations, dry spell durations and wet spell intensities using univariate frequency distributions separately for two seasons. The dependence between wet spell intensity and duration is accounted for by 2-copulas. For disaggregation of the wet spells into hourly intensities a predefined profile is used. In the second step a multi-site resampling procedure is applied on the synthetic point rainfall event series to reproduce the spatial dependence structure of rainfall. Resampling is carried out successively on all synthetic event series using simulated annealing with an objective function considering three bivariate spatial rainfall characteristics. In a case study synthetic precipitation is generated for some locations with short observation records in two mesoscale catchments of the Bode river basin located in northern Germany. The synthetic rainfall data are then applied for derived flood frequency analysis using the hydrological model HEC-HMS. The results show good performance in reproducing average and extreme rainfall characteristics as well as in reproducing observed flood frequencies. The presented model has the potential to be used for ungauged locations through regionalisation of the model parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study aims to improve the understanding about different atmospheric environments leading to the development of storms associated with heavy precipitation in Madeira Island. For this purpose, four main goals have been considered: 1) To document the synoptic and mesoscale environments associated with heavy precipitation. 2) To characterize surface precipitation patterns that affected the island during some periods of significant accumulated precipitation using numerical modelling. 3) To study the relationship between surface precipitation patterns and mesoscale environments. 4) To highlight how the PhD findings obtained in the first three goals can be translated into an operational forecast context. Concerning the large scale environment, precipitation over the island was favoured by weather systems (e.g, mesoscale convective systems and low pressure systems), as well as by the meridional transport of high amount of moisture from a structure denominated as “Atmospheric River”. The tropical origin of this moisture is underscored, however, their impact on the precipitation in Madeira was not so high during the 10 winter seasons [2002 – 2012] studied. The main factor triggering heavy precipitation events over the island is related to the local orography. The steep terrain favours orographically-induced stationary precipitation over the highlands, although maximum of precipitation at coastal region may be produced by localized blocking effect. These orographic precipitating systems presented different structures, associated with shallow and deep convection. Essentially, the study shows that the combination of airflow dynamics, moist content, and orography is the major mechanism that produces precipitation over the island. These factors together with the event duration act to define the regions of excessive precipitation. Finally, the study highlights two useful points for the operational sector, regarding the meridional water vapour transport and local effects causing significant precipitation over the Island; RESUMO: O estudo procura melhorar o entendimento sobre os diferentes ambientes atmosféricos que favorecem o desenvolvimento de tempestades associadas com precipitação intensa na ilha da Madeira. Nesse sentido foram definidos quatro objetivos: 1) Documentar os ambientes sinópticos e de mesoescala associados com precipitação intensa; 2) Caracterizar padrões de precipitação na superfície, em eventos de elevada precipitação acumulada, utilizando modelação numérica; 3) Estudar as relações entre os padrões de precipitação e ambientes de mesoescala; 4) Mostrar como tais resultados podem ser utilizados num contexto operacional de previsão do tempo. Em relação a ambientes de larga escala, verificou-se que a ocorrência de eventos de precipitação intensa sobre a ilha foi favorecida por sistemas meteorológicos, assim como pelo transporte meridional de humidade por meio de estruturas atualmente denominadas Rios atmosféricos. Neste último caso é de destacar a origem tropical de humidade, no entanto, o seu impacto na precipitação sobre a Madeira durante os 10 invernos estudados [2002-2012] não foi tão elevada. O principal fator que favorece os eventos de precipitação intensa está relacionado com a orografia local. O terreno complexo da ilha favorece a ocorrência de precipitação estacionária induzida orograficamente sobre as terras mais altas, embora a precipitação nas zonas costeiras possa ser produzida por um efeito localizado de bloqueio. Estes sistemas orográficos precipitantes apresentaram diferentes estruturas, associados a convecção pouco profunda e profunda. O estudo mostra que a combinação entre as características do escoamento, a quantidade de humidade, e a orografia são os condimentos essenciais para o desenvolvimento da precipitação sobre a ilha, atuando de maneira a definir as regiões de precipitação excessiva. Por fim, o estudo destaca dois pontos que podem ser úteis na previsão do tempo operacional, ligados a larga escala e aos efeitos locais, os quais podem levar ao desenvolvimento de tempestades e precipitação intensa sobre a ilha.